Citation: | FANG Lei, HUA Chuanxiang, ZHU Qingcheng. Study on fishery resource assessment of Pacific saury by length-based cohort analysis[J]. South China Fisheries Science, 2024, 20(3): 8-17. DOI: 10.12131/20230237 |
Being one of the primary fishing targets in Chinese pelagic fishing, Pacific saury (Cololabis saira) is distributed in the subtropical to temperate waters of the northwest Pacific Ocean. In order to explore its resource status, according to the catch at size and biological data of Northwest Pacific saury from 2014 to 2018, we conducted a performance test and a sensitivity analysis on length-based cohort analysis (LCA) model and biomass-based length-cohort analysis (B-LCA) model. Besides, we applied Monte Carlo method to estimate the model parameters, resource quantity, fishing mortality coefficients and maximum sustainable yield of Pacific saury. The results show that: 1) The LCA model and B-LCA model exhibited excellent fitting abilities at 5, 10 and 15 mm length intervals, with stronger fitting abilities at 5 mm interval. 2) LCA model performed better for fishery data in units of number, while B-LCA model performed better for fishery data in units of mass. 3) Both LCA and B-LCA models were sensitive to changes in growth factor (b) and asymptote length (L∞), with higher sensitivity to b. 4) The average resource mass of Pacific saury from 2014 to 2018 estimated by LCA model was about 65.93×104−171.51×104 t; the fishing mortality coefficient was 0.529 2; the maximum sustainable yield was 37.73×104 t. The average resource mass estimated by B-LCA model was about 47.88×104−126.25×104 t; the fishing mortality coefficient was 0.540 5; the maximum sustainable yield was 33.02×104 t. The maximum sustained production estimated by both models was lower than the average annual production of NPFC (North Pacific Ocean Commission) member countries (40.98×104 t), indicating that the Pacific saury resources had been overfished from 2014 to 2018.
[1] |
IWAHASHI M, ISODA Y, ITO S I, et al. Estimation of seasonal spawning ground locations and ambient sea surface temperatures for eggs and larvae of Pacific saury (Cololabis saira) in the western North Pacific[J]. Fish Oceanogr, 2006, 15(2): 125-138. doi: 10.1111/j.1365-2419.2005.00384.x
|
[2] |
王茜, 崔雪森. 国际渔业动态[J]. 渔业信息与战略, 2020, 35(4): 327-332.
|
[3] |
史登福, 张魁, 陈作志. 基于生活史特征的数据有限条件下渔业资源评估方法比较[J]. 中国水产科学, 2020, 27(1): 12-24.
|
[4] |
COSTELLO C, OVANDO D, HILBORN R, et al. Status and solutions for the world's unassessed fisheries[J]. Science, 2012, 338(6106): 517-520. doi: 10.1126/science.1223389
|
[5] |
HORDYK A, ONO K, VALENCIA S, et al. A novel length-based empirical estimation method of spawning potential ratio (SPR), and tests of its performance, for small-scale, data-poor fisheries[J]. ICES J Mar Sci, 2015, 72(1): 217-231. doi: 10.1093/icesjms/fsu004
|
[6] |
RUDD M B, THORSON J T. Accounting for variable recruitment and fishing mortality in length-based stock assessments for data-limited fisheries[J]. Can J Fish Aquat Sci, 2018, 75(7): 1019-1035. doi: 10.1139/cjfas-2017-0143
|
[7] |
WANG J T, YU W, CHEN X J, et al. Stock assessment for the western winter-spring cohort of neon flying squid (Ommastrephes bartramii) using environmentally dependent surplus production models[J]. Sci Mar, 2016, 80(1): 69-78.
|
[8] |
TRUESDELL S B, BENCE J R, SYSLO J M, et al. Estimating multinomial effective sample size in catch-at-age and catch-at-size models[J]. Fish Res, 2017, 192: 66-83. doi: 10.1016/j.fishres.2016.11.003
|
[9] |
JONES R. Assessing the long-term effects of changes in fishing effort and mesh size from length composition data[J]. ICES J Mar Sci, 1974, 33: 1-13.
|
[10] |
詹秉义. 渔业资源评估[M]. 北京: 中国农业出版, 1995: 312-314.
|
[11] |
周永东, 徐汉祥. 应用体长股分析法估算东海海鳗资源量[J]. 浙江海洋学院学报(自然科学版), 2007, 26(4): 399-403.
|
[12] |
周永东, 张洪亮, 徐汉祥, 等. 应用体长股分析法估算东海区日本鲭资源量[J]. 浙江海洋学院学报(自然科学版), 2011, 30(2): 91-94.
|
[13] |
吴斌, 方春林, 贺刚, 等. 运用体长股法初步估算湖口江段短颌鲚资源量[J]. 湖北农业科学, 2014, 53(16): 3866-3869.
|
[14] |
ZHANG C I, SULLIVAN P J. Biomass-based cohort analysis that incorporates growth[J]. Trans Am Fish Soc, 1988, 117(2): 180-189. doi: 10.1577/1548-8659(1988)117<0180:BBCATI>2.3.CO;2
|
[15] |
ZHANG C I, MEGREY B A. A simple biomass-based length-cohort analysis for estimating biomass and fishing mortality[J]. Trans Am Fish Soc, 2010, 139(3): 911-924. doi: 10.1577/T09-041.1
|
[16] |
朱清澄, 花传祥. 西北太平洋秋刀鱼渔业[M]. 北京: 海洋出版社, 2017: 1-2.
|
[17] |
TAMURA T, FUJISE Y. Geographical and seasonal changes of the prey species of minke whale in the Northwestern Pacific[J]. ICES J Mar Sci, 2002, 59(3): 516-528. doi: 10.1006/jmsc.2002.1199
|
[18] |
SHIMIZU Y, TAKAHASHI K, ITO S I, et al. Transport of subarctic large copepods from the Oyashio area to the mixed water region by the coastal Oyashio intrusion[J]. Fish Oceanogr, 2009, 18(5): 312-327. doi: 10.1111/j.1365-2419.2009.00513.x
|
[19] |
SMITH A D, BROWN C J, BULMAN C M, et al. Impacts of fishing low-trophic level species on marine ecosystems[J]. Science, 2011, 333(6046): 1147-1150. doi: 10.1126/science.1209395
|
[20] |
PIKITCH E K, ROUNTOS K J, ESSINGTON T E, et al. The global contribution of forage fish to marine fisheries and ecosystems[J]. Fish Fish, 2014, 15(1): 43-64. doi: 10.1111/faf.12004
|
[21] |
North Pacific Fisheries Commission. 7th Meeting Report[R]. Tokyo: NPFC, 2022.
|
[22] |
NAKAYA M, MORIOKA T, FUKUNAGA K, et al. Growth and maturation of Pacific saury Cololabis saira under laboratory conditions[J]. Fish Sci, 2010, 76: 45-53. doi: 10.1007/s12562-009-0179-9
|
[23] |
BAITALIUK A, ORLOV A, ERMAKOV Y K. Characteristic features of ecology of the Pacific saury Cololabis saira (Scomberesocidae, Beloniformes) in open waters and in the northeast Pacific Ocean[J]. J Ichthyol, 2013, 53(11): 899-913. doi: 10.1134/S0032945213110027
|
[24] |
朱清澄, 杨明树, 高玉珍, 等. 西北太平洋秋刀鱼耳石生长与性成熟度、个体大小的关系[J]. 上海海洋大学学报, 2017, 26(2): 263-270.
|
[25] |
KIMURA N, OKADA Y, MAHAPATRA K. Relationship between saury fishing ground and sea surface oceanographic features determined from satellite data along the northeastern coast of Japan[J]. J Mar Sci Technol, 2004, 2(2): 1-12.
|
[26] |
张孝民, 石永闯, 李凡, 等. 基于MAXENT模型预测西北太平洋秋刀鱼潜在渔场[J]. 上海海洋大学学报, 2020, 29(2): 280-286.
|
[27] |
张培超, 张孝民, 陈丙见, 等. 北太平洋秋刀鱼渔场与水温垂直结构的关系[J]. 河北渔业, 2022(6): 35-39, 44.
|
[28] |
谢斌, 汪金涛, 陈新军, 等. 西北太平洋秋刀鱼资源丰度预报模型构建比较[J]. 广东海洋大学学报, 2015, 35(6): 58-63.
|
[29] |
朱文涛, 陈新军, 汪金涛, 等. 基于灰色系统的西北太平洋秋刀鱼资源丰度预测[J]. 广东海洋大学学报, 2018, 38(6): 13-17.
|
[30] |
孟令文, 朱清澄, 花传祥, 等. 栖息地指数模型在北太公海秋刀鱼渔情预报中的应用[J]. 海洋湖沼通报, 2018(6): 142-149. doi: 10.13984/j.cnki.cn37-1141.2018.06.019
|
[31] |
许巍, 朱清澄, 张先存, 等. 西北太平洋秋刀鱼舷提网捕捞技术[J]. 齐鲁渔业, 2005, 22(10): 43-45.
|
[32] |
石永闯, 朱清澄, 张衍栋, 等. 基于模型试验的秋刀鱼舷提网纲索张力性能研究[J]. 中国水产科学, 2016, 23(3): 704-712.
|
[33] |
PAULY D. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks[J]. ICES J Mar Sci, 1980, 39(2): 175-192. doi: 10.1093/icesjms/39.2.175
|
[34] |
ALLEN M S, WALTERS C J, MYERS R. Temporal trends in largemouth bass mortality, with fishery implications[J]. N Am J Fish Manag, 2008, 28(2): 418-427. doi: 10.1577/M06-264.1
|
[35] |
HUGHES S E. Stock composition, growth, mortality, and availability of Pacific saury, Cololabis saira, of the northeastern Pacific Ocean[J]. Fish Bull, 1974, 72(1): 121-131.
|
[36] |
GUPTA H V, KLING H, YILMAZ K K, et al. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling[J]. J Hydrol, 2009, 377(1/2): 80-91.
|
[37] |
MORIASI D N, GITAU M W, PAI N, et al. Hydrologic and water quality models: performance measures and evaluation criteria[J]. Transactions of ASABE, 2015, 58(6): 1763-1785. doi: 10.13031/trans.58.10715
|
[38] |
SUN X, NEWHAM L T, CROKE B F, et al. Three complementary methods for sensitivity analysis of a water quality model[J]. Environ Model Softw, 2012, 37: 19-29. doi: 10.1016/j.envsoft.2012.04.010
|
[39] |
PLUMMER M, BEST N, COWLES K, et al. CODA: convergence diagnosis and output analysis for MCMC[J]. R News, 2006, 6(1): 7-11.
|
[40] |
官文江, 吴佳文, 曹友华. 利用后向预报方法分析印度洋黄鳍金枪鱼资源评估模型[J]. 中国海洋大学学报 (自然科学版), 2020, 50(2): 52-59.
|
[41] |
KIM T K. T Test as a parametric statistic[J]. Korean J Anesthesiol, 2015, 68(6): 540-546. doi: 10.4097/kjae.2015.68.6.540
|
[42] |
RIVARD D. Effects of systematic, analytical, and sampling errors on catch estimates: a sensitivity analysis[J]. Can Spec Publ J Fish Aquat Sci, 1983, 66: 114-129.
|
[43] |
LAI H L, GALLUCCI V F. Effects of parameter variability on length-cohort analysis[J]. ICES J Mar Sci, 1988, 45(1): 82-92. doi: 10.1093/icesjms/45.1.82
|
[44] |
李忠炉, 金显仕, 单秀娟, 等. 小黄鱼体长-体质量关系和肥满度的年际变化[J]. 中国水产科学, 2011, 18(3): 602-610.
|
[45] |
吴斌, 方春林, 贺刚, 等. FiSAT II 软件支持下的体长股分析法探讨[J]. 南方水产科学, 2013, 9(4): 94-98.
|
[46] |
HOLLOWED A B, IANELLI J N, LIVINGSTON P A. Including predation mortality in stock assessments: a case study for Gulf of Alaska walleye pollock[J]. ICES J Mar Sci, 2000, 57(2): 279-293. doi: 10.1006/jmsc.1999.0637
|