LI Peng, XU Liuxiong, ZHOU Cheng, WANG Xuefang, TANG Hao, LIU Wei. Variation of fishing ground gravity of tuna free-swimming school caught by purse seiner in Western and Central Pacific Ocean and its relationship with Southern Oscillation Index[J]. South China Fisheries Science, 2020, 16(2): 70-76. DOI: 10.12131/20190158
Citation: LI Peng, XU Liuxiong, ZHOU Cheng, WANG Xuefang, TANG Hao, LIU Wei. Variation of fishing ground gravity of tuna free-swimming school caught by purse seiner in Western and Central Pacific Ocean and its relationship with Southern Oscillation Index[J]. South China Fisheries Science, 2020, 16(2): 70-76. DOI: 10.12131/20190158

Variation of fishing ground gravity of tuna free-swimming school caught by purse seiner in Western and Central Pacific Ocean and its relationship with Southern Oscillation Index

More Information
  • Received Date: August 15, 2019
  • Revised Date: November 08, 2019
  • Accepted Date: December 02, 2019
  • Available Online: December 09, 2019
  • Based on the data of fishing positon, fishing date and catch of free-swimming school from the logbooks of Chinese tuna purse seine fishing fleet operating on the Western and Central Pacific Ocean during 2013 and 2017, we analyzed the relationship between monthly and yearly variation of fishing grounds gravity of free-swimming school and the South Oscillation Index (SOI) obtained from the US Climate Analysis Center. The results show that more catch was found in the fishing areas with sea surface temperature (SST) above 29.5 ℃. The fishing ground gravity was mainly distributed between 160°E and 175°W. The gravity center had an eastward tendency from 2013 to 2015 without evident monthly variation. The "warm pool" and the gravity center of the Western and Central Pacific Ocean moved towards the west when SOI was positive, while the gravity center moved eastwards when SOI was negative. Correlation analysis shows a significant negative correlation between SOI and fishing ground gravity (the correlation coefficient was −0.27, P<0.05), indicating that there was a close relationship between the change of fishing ground gravity center and climate change. The study helps understand the variation law of fishing ground of tuna purse seine fishery in the Western and Central Pacific Ocean.

  • [1]
    TRIGUEROS-SALMERON J A, ORTEGA-GARCIA S. Spatial and seasonal variation of relative abundance of the skipjack tuna Katsuwonus pelamis (Linnaeus, 1758) in the Eastern Pacific Ocean (EPO) during 1970−1995[J]. Fish Res, 2001, 49(3): 1-232.
    [2]
    孟晓梦, 叶振江, 王英俊. 世界黄鳍金枪鱼渔业现状和生物学研究进展[J]. 南方水产, 2007, 3(4): 74-80.
    [3]
    陈新军, 郑波. 中西太平洋金枪鱼围网渔业鲣鱼资源的时空分布[J]. 海洋学研究, 2007, 25(2): 13-22. doi: 10.3969/j.issn.1001-909X.2007.02.002
    [4]
    郭爱, 陈新军. ENSO与中西太平洋金枪鱼围网资源丰度及其渔场变动的关系[J]. 海洋渔业, 2005, 27(4): 338-342. doi: 10.3969/j.issn.1004-2490.2005.04.015
    [5]
    LEHODEY P, ALHEIT J, BARAANGE M, et al. Climate variability, fish, and fisheries[J]. J Climate, 2006, 19(20): 5009-5030. doi: 10.1175/JCLI3898.1
    [6]
    KOENIGSTEIN S, MARK F C, GOESSLING-REISEMANN S, et al. Modelling climate change impacts on marine fish populations: process-based integration of ocean warming, acidification and other environmental drivers[J]. Fish Fish, 2016, 17(4): 972-1004. doi: 10.1111/faf.12155
    [7]
    ANDERSON J J, GURARIE E, BRACIS C, et al. Modeling climate change impacts on phenology and population dynamics of migratory marine species[J]. Ecol Model, 2013, 264(4): 83-97.
    [8]
    MULLEN A J. Reaction diffusion models for dynamics distribution of yellowfin tuna[D]. London: University of London, 1992: 127.
    [9]
    LEHODEY P, BERTIGNAC M, HAMPTON J, et al. El Niño Southern Oscillation and tuna in the western Pacific[J]. Nature, 1997, 389(6652): 715-718. doi: 10.1038/39575
    [10]
    黄易德. 中西太平洋正鲣资源时空分布特性的研究[D]. 基隆: 国立台湾海洋大学, 2002: 83.
    [11]
    李政纬. ENSO现象对中西太平洋鲣围网渔况之影响[D]. 基隆: 国立台湾海洋大学, 2005: 16.
    [12]
    胡奎伟, 朱国平, 王学昉, 等. 中西太平洋鲣鱼丰度的时空分布及其与表温的关系[J]. 海洋渔业, 2011, 33(4): 417-422. doi: 10.3969/j.issn.1004-2490.2011.04.008
    [13]
    周甦芳, 沈建华, 樊伟. ENSO现象对中西太平洋鲣鱼围网渔场的影响分析[J]. 海洋渔业, 2004, 26(3): 167-172. doi: 10.3969/j.issn.1004-2490.2004.03.002
    [14]
    郭爱, 陈新军, 范江涛. 中西太平洋鲣鱼时空分布及其与ENSO关系探讨[J]. 水产科学, 2010, 29(10): 591-596. doi: 10.3969/j.issn.1003-1111.2010.10.006
    [15]
    WANG X F, XU L X, CHEN Y, et al. Impacts of fish aggregation devices on size structures of skipjack tuna Katsuwonus pelamis[J]. Aquat Ecol, 2012, 46(3): 343-352. doi: 10.1007/s10452-012-9405-0
    [16]
    DRUON J N, EMMANUEL C, FLOCH L, et al. Preferred habitat of tropical tuna species in the Eastern Atlantic and Western Indian Oceans: a comparative analysis between FAD-associated and free-swimming schools[C]// IOTC WPTT-17, 2015: 7-16.
    [17]
    MILLER A M M, BUSH S R, van ZWIETEN P A M. Sub-regionalisation of fisheries governance: the case of the Western and Central Pacific Ocean tuna fisheries[J]. Maritime Stud, 2014, 13(1): 17. doi: 10.1186/s40152-014-0017-2
    [18]
    SIBERT J, HAMPTON J, KLEIBER P, et al. Biomass, size, and trophic status of top predators in the Pacific Ocean[J]. Science, 2006, 314(586): 1773-1776.
    [19]
    何珊, 王学昉, 戴小杰, 等. 中国金枪鱼围网船队大眼金枪鱼渔获物的特征变化与人工集鱼装置禁渔期的关系[J]. 南方水产科学, 2017, 13(5): 110-116. doi: 10.3969/j.issn.2095-0780.2017.05.015
    [20]
    周静亚, 杨大升. 海洋气象学[M]. 北京: 气象出版社, 1994: 105-119.
    [21]
    唐峰华, 崔雪森, 杨胜龙, 等. 海洋环境对中西太平洋金枪鱼围网渔场影响的GIS时空分析[J]. 南方水产科学, 2014, 10(2): 18-26. doi: 10.3969/j.issn.2095-0780.2014.02.003
    [22]
    汪金涛, 陈新军. 中西太平洋鲣鱼渔场的重心变化及其预测模型建立[J]. 中国海洋大学学报(自然科学版), 2013, 43(8): 44-48.
    [23]
    陈世泳. 中西太平洋正鲣渔场推移与表面水温变异之关系[D]. 基隆: 国立台湾海洋大学, 2006: 25-26.
    [24]
    WANG X F, CHEN Y, TRUESDELL S, et al. The large-scale deployment of fish aggregation devices alters environmentally-based migratory behavior of skipjack tuna in the Western Pacific Ocean[J]. PLoS One, 2014, 9(5): e98226. doi: 10.1371/journal.pone.0098226
    [25]
    杨晓明, 戴小杰, 田思泉, 等. 中西太平洋鲣鱼围网渔业资源的热点分析和空间异质性[J]. 生态学报, 2014, 34(13): 3771-3778.
    [26]
    TSENG C T, SUN C L, YEH S Z, et al. Spatio-temporal distributions of tuna species and potential habitats in the Western and Central Pacific Ocean derived from multi-satellite data[J]. Int J Remote Sens, 2010, 31(17/18): 4543-4558.
    [27]
    LEHODEY P. The pelagic ecosystem of the tropical Pacific Ocean: dynamic spatial modeling and biological consequences of ENSO[J]. Prog Oceanogr, 2001, 49(1): 439-468.
    [28]
    MATSUMOTO W M, SKILLMAN R A, DIZON A E. Synopsis of biological data on skipjack tuna, Katsuwonus pelamis. NOAA Technical Report NMFS Circular, No. 451[J]. FAO Fisheries Synopsis, 1984(136): 1-92.
    [29]
    LAN K W, EVANS K, LEE M A. Effects of climate variability on the distribution and fishing conditions of yellowfin tuna (Thunnus albacares) in the western Indian Ocean[J]. Climatic Change, 2013, 119(1): 63-77. doi: 10.1007/s10584-012-0637-8
    [30]
    唐浩, 许柳雄, 陈新军, 等. 基于GAM模型研究时空及环境因子对中西太平洋鲣鱼渔场的影响[J]. 海洋环境科学, 2013, 32(4): 518-522.
    [31]
    LIN H L, LIAO C H. Spatio-temporal distribution of yellowfin tuna Thunnus albacares and bigeye tuna Thunnus obesus in the tropical Pacific Ocean in relation to large-scale temperature fluctuation during ENSO episodes[J]. Fish Sci, 2010, 67(6): 1046-1052.
  • Related Articles

    [1]CHENG Jing, LI Gengfeng, MO Dexin, HU Kaihong, GAO Zihan, LI Feng, LIANG Rishen. Morphologal characteristics and mitochondrial genome of Gymnothorax poikilospilus, a new recorded Gymnothorax species from mainland China[J]. South China Fisheries Science. DOI: 10.12131/20250006
    [2]OUYANG Yan, PAN Jinmin, XIAN Lin, LIU Baosuo, GUO Huayang, Zhu Tengfei, ZHANG Nan, ZHU Kecheng, ZHANG Dianchang. Chromosome-level genome and characteristic analysis of Platax teira[J]. South China Fisheries Science, 2024, 20(6): 31-42. DOI: 10.12131/20240112
    [3]CHEN Qiuyu, ZHENG Xiaoting, ZHONG Jinsong, CHEN Zhibing, WANG Ying, LIANG Xueying, DONG Hongbiao, ZHANG Jiasong. Morphological characterization of embryonic development in Rana catesbeiana[J]. South China Fisheries Science, 2023, 19(6): 158-165. DOI: 10.12131/20230015
    [4]CHEN Jing, HUANG Delian, WANG Xuehui, XU Lei, ZHANG Jian, LI Yafang, NING Jiajia, WANG Lianggen, LIU Shuangshuang, LIN Zhaojin, DU Feiyan. Species identification and morphology of fish eggs from Jiangmen coastal waters in spring using DNA barcoding[J]. South China Fisheries Science, 2022, 18(6): 10-18. DOI: 10.12131/20220028
    [5]LIU Mingjian, GUO Huayang, GAO Jie, ZHU Kecheng, LIU Baosuo, GUO Liang, ZHANG Nan, YANG Jingwen, LIU Bo, ZHANG Dianchang. Embryonic development and morphological characteristics of larvae and juvenile of Platax teira[J]. South China Fisheries Science, 2022, 18(4): 103-111. DOI: 10.12131/20210251
    [6]CAO Kuan, ZHENG Jiao, WANG Zhiyong, LIU Xiande, CAI Mingyi. Genome size and physical length of chromosomes in Nibea albiflora[J]. South China Fisheries Science, 2015, 11(4): 65-70. DOI: 10.3969/j.issn.2095-0780.2015.04.010
    [7]JIANG Yan′e, CHEN Zuozhi, LIN Zhaojin, QIU Yongsong, FANG Zhanqiang. Statolith morphology of purpleback flying squid Sthenoeuthis oualaniensis in the central South China Sea[J]. South China Fisheries Science, 2014, 10(4): 85-90. DOI: 10.3969/j.issn.2095-0780.2014.04.014
    [8]OU Youjun, SU Hui, LI Jia′er, WANG Yongcui, LIAO Guangyong. Morphological and biological characteristics of sevenband grouper Epinephelus septemfasciatus[J]. South China Fisheries Science, 2012, 8(2): 71-75. DOI: 10.3969/j.issn.2095-0780.2012.02.011
    [9]ZHOU Chen. Karyotype analysis of chromosome of 2 Gobioid species[J]. South China Fisheries Science, 2010, 6(4): 72-76. DOI: 10.3969/j.issn.1673-2227.2010.04.012
    [10]OU Youjun, XIE Jing. Karyotype analysis of Cromileptes altivelis[J]. South China Fisheries Science, 2007, 3(5): 49-53.

Catalog

    Recommendations
    不同复合碳源对沉积物-水界面营养盐垂直分布特征及交换通量的影响
    罗义民 et al., 南方水产科学, 2025
    丰水期珠江口浮游植物群落结构特征及其环境影响因子分析
    粟丽 et al., 南方水产科学, 2025
    外伶仃海洋牧场附近海域沉积物重金属分布特征及生态风险评价
    冯雪 et al., 南方水产科学, 2024
    基于高频水平机械扫描式声呐图像的海水网箱养殖卵形鲳鲹数量估算方法
    胡家祯 et al., 南方水产科学, 2024
    土壤和烟叶中多环芳烃的暴露特征及健康风险评估
    MA Jun et al., JOURNAL OF NANJING FORESTRY UNIVERSITY NATURAL, SCIENCES EDITION, 2024
    夏季北黄海贝类养殖区环境因子、长牡蛎糖原和免疫指标变化的调查
    高磊 et al., 水产学报, 2024
    Ecological and health risk assessments of polycyclic aromatic hydrocarbons (pahs) in soils around a petroleum refining plant in china: a quantitative method based on the improved hybrid model
    Wang, Hanzhi et al., JOURNAL OF HAZARDOUS MATERIALS, 2024
    Polycyclic aromatic hydrocarbons (pahs): updated aspects of their determination, kinetics in the human body, and toxicity
    Barbosa, Fernando et al., JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH-PART B-CRITICAL REVIEWS, 2023
    Relationship between chlorophyll-a, ph, and dissolved oxygen in a tropical urban lake waters: a case study from air hitam lake, samarinda city, indonesia
    WATER CONSERVATION AND MANAGEMENT, 2024
    Toxicity and health implications of pesticides and the need to remediate pesticide-contaminated wastewater through the advanced oxidation processes
    WATER CONSERVATION AND MANAGEMENT, 2024
    Powered by
    Article views (5212) PDF downloads (78) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return