GENG Ziyi, DONG Sisong, ZHANG Fan. Sensitivity analysis of CMSY based on varying parameter priorassumptions[J]. South China Fisheries Science. DOI: 10.12131/20240273
Citation: GENG Ziyi, DONG Sisong, ZHANG Fan. Sensitivity analysis of CMSY based on varying parameter priorassumptions[J]. South China Fisheries Science. DOI: 10.12131/20240273

Sensitivity analysis of CMSY based on varying parameter priorassumptions

More Information
  • Received Date: November 27, 2024
  • Revised Date: March 20, 2025
  • Accepted Date: March 24, 2025
  • Available Online: April 08, 2025
  • Due to data limitation, most fisheries, most fisheries find it difficult to use traditional fisheries resource assessment methods to provide recommendations for fisheries management. As a result, data-limited assessment models have gainedincreasing attention, among which catch-maximum sustainable yield (CMSY) has become a widely used method internationally. However, studies indicate that CMSY is highly dependent on prior assumptions, and the specific impacts of different parameter priors on model outputs remain uncertain. To address this problem, we conducted a sensitivity analysis of CMSY by randomly selecting 200 fish and invertebrate populations from different sea areas from the RAM Legacy Stock Assessment Database. The model estimation results, including biomass trajectory, MSY, BMSY, FMSY, B/BMSY and F/FMSY were systematically analyzed to examine their variations by incrementally adjusting the upper and lower bounds of the intrinsic growth rate (r), and the biomass levels at the start, middle and end years (Bstart/K, Bint/K, Bend/K). The results indicate that: 1) Biomass trajectory, BMSY, and FMSY were significantly influenced by the lower bound of r, while B/BMSY and F/FMSY were more sensitive to the upper bound of Bend/K. MSY was less affected by the prior settings of the parameters. 2) Taxonomic classification at the order level exhibited no significant influence on the sensitivity of the CMSY method. 3) Variations in parameter priors were observed to induce quadrant transitions in the population stock status depicted in the Kobe plot, among which the upper bound of Bend/K showed the most significant effect. This study reveals that the CMSY model exhibited high sensitivity to parameter prior settings. It is suggested that careful parameter configuration and result interpretation are essential when utilizing this model.

  • [1]
    石永闯, 樊伟, 张衡, 等. 适用于数据缺乏渔业的资源评估方法研究进展[J]. 中国水产科学, 2021, 28(5): 673-691. doi: 10.12264/JFSC2020-0309
    [2]
    COSTELLO C, OVANDO D. Status, institutions, and prospects for global capture fisheries[J]. Annu Rev Environ Resour, 2019, 44(1): 177-200. doi: 10.1146/annurev-environ-101718-033310
    [3]
    石永闯. 西北太平洋秋刀鱼 (Cololabis saira) 资源评估研究[D]. 上海: 上海海洋大学, 2020: 48.
    [4]
    COSTELLO C, OVANDO D, HILBORN R, et al. Status and solutions for the world’s unassessed fisheries[J]. Science, 2012, 338(6106): 517-520. doi: 10.1126/science.1223389
    [5]
    ROSENBERG A A, FOGARTY M J, COOPER A B, et al. Developing new approaches to global stock status assessment and fishery production potential of the seas[R]. Rome: FAO, 2014: 0_1, I, IV, X, XI, 1, 3, 5-25, 27-45, 47-49, 51-81, 83-89, 91-103, 105-175.
    [6]
    FROESE R, DEMIREL N, CORO G, et al. Estimating fisheriesreference points from catch and resilience[J]. Fish Fish, 2017, 18(3): 506-526. doi: 10.1111/faf.12190
    [7]
    VASCONCELLOS M, COCHRANE K. Overview of world status of data-limited fisheries: inferences from landings statistics[C]//Anchorage: University of Alaska Fairbanks. Fisheries assessment and management in data-limited situations, 2005: 1-20.
    [8]
    THORSON J T, MINTO C, MINTE-VERA C V, et al. A new role for effort dynamics in the theory of harvested populations and data-poor stock assessment[J]. Can J Fish Aquat Sci, 2013, 70(12): 1829-1844. doi: 10.1139/cjfas-2013-0280
    [9]
    MACCALL A D. Depletion-corrected average catch: a simple formula for estimating sustainable yields in data-poor situations[J]. ICES J Mar Sci, 2009, 66(10): 2267-2271. doi: 10.1093/icesjms/fsp209
    [10]
    DICK E, MACCALL A D. Depletion-based stock reduction analysis: a catch-based method for determining sustainable yields for data-poor fish stocks[J]. Fish Res, 2011, 110(2): 331-341. doi: 10.1016/j.fishres.2011.05.007
    [11]
    COPE J M. Implementing a statistical catch-at-age model (Stock Synthesis) as a tool for deriving overfishing limits in data-limited situations[J]. Fish Res, 2013, 142: 3-14. doi: 10.1016/j.fishres.2012.03.006
    [12]
    PONS M, COPE J M, KELL L T. Comparing performance of catch-based and length-based stock assessment methods in data-limited fisheries[J]. Can J Fish Aquat Sci, 2020, 77(6): 1026-1037. doi: 10.1139/cjfas-2019-0276
    [13]
    CHEUNG W W, PALACIOS-ABRANTES J, FRÖLICHER T L, et al. Rebuilding fish biomass for the world's marine ecoregionsunder climate change[J]. Glob Change Biol, 2022, 28(21): 6254-6267. doi: 10.1111/gcb.16368
    [14]
    FROESE R, WINKER H, CORO G, et al. Status and rebuilding of European fisheries[J]. Mar Pol, 2018, 93: 159-170. doi: 10.1016/j.marpol.2018.04.018
    [15]
    ZHANG K, ZHANG J, XU Y W, et al. Application of a catch-based method for stock assessment of three important fisheries in the East China Sea[J]. Acta Oceanol Sin, 2018, 37: 102-109.
    [16]
    FROESE R, WINKER H, CORO G, et al. New developments in the analysis of catch time series as the basis for fish stock assessments: the CMSY plus plus method[J]. Acta Ichthyol Piscat, 2023, 53: 173-189. doi: 10.3897/aiep.53.e105910
    [17]
    OVANDO D, FREE C M, JENSEN O P, et al. A history and evaluation of catch-only stock assessment models[J]. Fish Fish, 2022, 23(3): 616-630. doi: 10.1111/faf.12637
    [18]
    LIANG C, XIAN W W, PAULY D. Assessments of 15 exploited fish stocks in Chinese, South Korean and Japanese waters using the CMSY and BSM methods[J]. Front Mar Sci, 2020, 7: 623. doi: 10.3389/fmars.2020.00623
    [19]
    FALSONE F, SCANNELLA D, GERACI M L, et al. How fishery collapses: the case of Lepidopus caudatus (Pisces: Trichiuridae) in the Strait of Sicily (Central Mediterranean)[J]. Front Mar Sci, 2021, 7: 584601. doi: 10.3389/fmars.2020.584601
    [20]
    BOUCH P, MINTO C, REID D G, et al. Comparative performance of data-poor CMSY and data-moderate SPiCT stock assessment methods when applied to data-rich, real-world stocks[J]. ICES J Mar Sci, 2021, 78(1): 264-276. doi: 10.1093/icesjms/fsaa220
    [21]
    陈镝安, 朱江峰, 耿喆. 应用3种数据有限方法对印度洋近海金枪鱼类和马鲛类资源评估[J]. 上海海洋大学学报, 2024, 33(3): 728-740.
    [22]
    FROESE R, DEMIREL N, CORO G, et al. User guide for CMSY++[R]. Kiel: GEOMAR, 2021: 1-17.
    [23]
    RICARD D, MINTO C, JENSEN O P, et al. Examining the knowledge base and status of commercially exploited marine species with the RAM Legacy Stock Assessment Database[J]. Fish Fish, 2012, 13(4): 380-398. doi: 10.1111/j.1467-2979.2011.00435.x
    [24]
    莫奇龙, 胡世森, 谢君君, 等. 南海北部海鳗资源利用状况评估[J]. 渔业信息与战略, 2022, 37(1): 27-33.
    [25]
    MAUNDER M N, AIRE-DA-SILVA A. Evaluation of the kobe plot and strategy matrix and their application to tuna in the EPO[R]. La Jolla, USA: IATTC, 2012.
    [26]
    DE BRUYN P. Report of the 2017 ICCAT shortfin mako assessment meeting[R]. Madrid: ICCAT, 2017.
    [27]
    IOTC SECRETARIAT. Report of the 26th session of the IOTC working party on tropical tunas[R]. Seychelles: IOTC, 2024.
    [28]
    FROESE R, PALOMARES M L D, PAULY D. Estimation of life history key facts[M]//FROESE R, PAULY D. FishBase 2000: Concepts, Design and Data Sources. Philippines: ICLARM, 2000.
    [29]
    石永闯, 陈云云, 樊伟, 等. 基于Catch-MSY模型的西北太平洋日本鲭资源评估及敏感性分析[J]. 海洋渔业, 2023, 45(1): 26-38. doi: 10.3969/j.issn.1004-2490.2023.01.003
    [30]
    BOX G E P. Robustness in the strategy of scientific model building[M]//Robustness in statistics. Newyork: Academic Press, 1979: 201-236.
    [31]
    WINKER H, CARVALHO F, SHARMA R, et al. Initial results for North and South Atlantic shortfin mako (Isurus oxyrinchus) stock assessments using the Bayesian surplus production model JABBA and the catch-resilience method CMSY[R]. Madrid: ICCAT, 2017: 1836-1866.
    [32]
    FITZGERALD C J, DELANTY K, SHEPHARD S. Inland fish stock assessment: Applying data-poor methods from marine systems[J]. Fish Manag Ecol, 2018, 25(4): 240-252. doi: 10.1111/fme.12284
    [33]
    FREE C M, JENSEN O P, ANDERSON S C, et al. Blood from a stone: performance of catch-only methods in estimating stock biomass status[J]. Fish Res, 2020, 223: 105452. doi: 10.1016/j.fishres.2019.105452
  • Related Articles

    [1]ZHENG Jichang, YAN Han, JIANG Yan, XU Yongjiang, CUI Aijun, MA Bin. Effects of flow velocity on swimming behavior of Lateolabrax maculatus juvenile with different population sizes[J]. South China Fisheries Science. DOI: 10.12131/20240260
    [2]DENG Yunlong, CAO Yucheng, XU Yu, WEN Guoliang, SU Haochang, HU Xiaojuan, XU Wujie, LU Jie, YU Zhaolong. Study on purification effect of shellfish and algae coupling on intensive aquaculture tailwater[J]. South China Fisheries Science, 2023, 19(5): 113-122. DOI: 10.12131/20230077
    [3]ZHANG Xinxin, LI Ting, LI Shaowen, ZHU Changbo, ZHANG Bo, SU Jiaqi, RUAN Guoliang, ZHANG Xiaoyang. Purification effect of searice paddy field on brackish water environment of shrimp culture[J]. South China Fisheries Science, 2023, 19(3): 19-28. DOI: 10.12131/20220261
    [4]ZHANG Dongsheng, WANG Zufeng, ZHOU Wei. Effects of Jet Water Mixer on physicochemical parameters and bacterial abundance in Apostichopus japonicus pond[J]. South China Fisheries Science, 2021, 17(6): 85-92. DOI: 10.12131/20210065
    [5]PENG Biaobiao, ZHAO Feng, WANG Sikai, ZHANG Tao, YANG Gang, MIAO Zhongbo, ZHUANG Ping. Habitat traits of Lateolabrax japonicus in different subhabitats of Yangtze River Estuary[J]. South China Fisheries Science, 2021, 17(4): 1-8. DOI: 10.12131/20210023
    [6]SUN Caiyun, DONG Hongbiao, WANG Wenhao, LI Yong, GU Qunhong, DUAN Yafei, ZHANG Jiasong, XU Xiaodong. Effects of glycerol monolaurate on lipid metabolism of Lateolabrax maculatus[J]. South China Fisheries Science, 2021, 17(1): 67-75. DOI: 10.12131/20200130
    [7]LI Fuxiang, WANG Pengfei, YAN Lulu, QIU Lihua. Molecular cloning and expression pattern analysis of irak4 in sea perch (Lateolabrax maculatus)[J]. South China Fisheries Science, 2018, 14(5): 70-79. DOI: 10.3969/j.issn.2095-0780.2018.05.009
    [8]QIAN Zhuozhen, WU Chengye, LIU Zhiyu, TANG Shuifen, LUO Fangfang. Accumulation and elimination of avermectin in perch (Lateolabrax japonicus)muscle[J]. South China Fisheries Science, 2013, 9(6): 52-57. DOI: 10.3969/j.issn.2095-0780.2013.06.009
    [9]LIU Zhaoyang, SUN Xiaoqing. Comprehensive application of biological control techniques for water purification in aquaculture[J]. South China Fisheries Science, 2007, 3(1): 69-74.
    [10]LUO Yongsheng, LI Zhuojia, WEN Guoliang, CHEN Yongqing. Preliminary studies on density changes of Gracilarla tenuistipitata var. liui used for the purification of shrimp effluent[J]. South China Fisheries Science, 2006, 2(5): 7-11.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return