Citation: | SONG Liming, WANG Wenxin, LI Yuwei. Influence of miniature temperature-depth recorder (TDR-2050) on hook depth of tuna longline fishing hooks[J]. South China Fisheries Science, 2025, 21(2): 14-26. DOI: 10.12131/20240249 |
Understanding the hook depth of longline fishing gear is crucial for improving the catch rate of target species and reducing the bycatch. Based on the tuna longline survey data collected in the high seas west of Polynesia from January to August of 2016, we employed the finite element method to construct a three-dimensional dynamic model. We used the explicit sixth-order five-stage Runge-Kutta method to calculate hook depths, and utilized a numerical model with temperature-depth recorder (TDR) mass in water was to correct the simulated depths without TDR mass in water. Then we conducted a one-way ANOVA to compare the hook depths obtained from numerical models with and without TDR (2050) mass in water, against the actual TDR measurements and corrected depths at sea. The results show that: 1) There was no significant difference between the hook depth calculated by the numerical models of mass in water with and without TDR and the hook depth measured and corrected by TDR at sea (p>0.05), indicating that the numerical model was correct. 2) As the current weakened, the influence of TDR on the depth of settlement increased gradually. 3) When the flow velocity was less than 0.16 m·s−1, the influence of TDR on the depth of the hooks in the shallow, middle, and deepest groups of longline fishing increased by an average of 1.0, 2.3, and 3.7 m, with correction factors of 1.010, 1.011, and 1.016 for each group, respectively. 4) The TDR (2050) from the Canadian RBR Company can be effectively utilized for measuring the depth of longline fishing hooks, and its impact on the depth of the hook can be disregarded in the future. The dynamic model of longline fishing gear established in this study can simulate the sinking depth of the hook under the action of three-dimensional currents, explore the influence of TDR mass in water on the sinking depth of longline fishing, and perform the three-dimensional visualization of spatial shape changes.
[1] |
MOORE B R, BELL J D, EVANS K, et al. Defining the stock structures of key commercial tunas in the Pacific Ocean I: current knowledge and main uncertainties[J]. Fish Res, 2020, 230: 105525. doi: 10.1016/j.fishres.2020.105525
|
[2] |
刘省荣. 中西太平洋海域金枪鱼资源开发与保护现状分析[D]. 上海: 上海海洋大学, 2018: 10-20.
|
[3] |
CAMPBELL R A, YOUNG J W. Monitoring the behaviour of longline gears and the depth and time of fish capture in the Australian eastern tuna and billfish Fishery[J]. Fish Res, 2012, 119/120: 48-65. doi: 10.1016/j.fishres.2011.12.006
|
[4] |
BIGELOW K, MUSYL M K, POISSON F, et al. Pelagic longline gear depth and shoaling[J]. Fish Res, 2006, 77(2): 173-183. doi: 10.1016/j.fishres.2005.10.010
|
[5] |
BACH P, GAERTNER D, MENKES C, et al. Effects of the gear deployment strategy and current shear on pelagic longline shoaling[J]. Fish Res, 2009, 95(1): 55-64. doi: 10.1016/j.fishres.2008.07.009
|
[6] |
李灵智, 黄洪亮, 刘健, 等. 大西洋中部金枪鱼延绳钓性能评估初步研究[J]. 渔业信息与战略, 2012, 27(4): 310-315. doi: 10.3969/j.issn.1004-8340.2012.04.009
|
[7] |
郭爱, 林显鹏, 张洪亮, 等. 南太平洋公海长鳍金枪鱼延绳钓钓捕技术及生产分析[J]. 浙江海洋学院学报(自然科学版), 2010, 29(3): 246-253.
|
[8] |
PARRA H, MACHETE M, SANTOS M, et al. Incidental capture of sea turtles in the Northeast Atlantic Portuguese pelagic longline fishery[J]. Fish Res, 2023, 263: 106673. doi: 10.1016/j.fishres.2023.106673
|
[9] |
CURRAN D, BIGELOW K. Effects of circle hooks on pelagic catches in the Hawaii-based tuna longline fishery[J]. Fish Res, 2011, 109(2/3): 265-275.
|
[10] |
LOMELI M J M, WAKEFIELD W W, ABELE M, et al. Testing of hook sizes and appendages to reduce yelloweye rockfish bycatch in a Pacific halibut longline fishery[J]. Ocean Coast Manage, 2023, 241: 106664. doi: 10.1016/j.ocecoaman.2023.106664
|
[11] |
刘莉莉, 周成, 虞聪达, 等. 钓钩深度和浸泡时间对东太平洋公海长鳍金枪鱼延绳钓渔获性能的影响研究[J]. 中国海洋大学学报(自然科学版), 2018, 48(1): 40-48.
|
[12] |
BOGGS C H. Depth, capture time, and hooked longevity of longline-caught pelagic fish: timing bites of fish with chips[J]. Fish Bull, 1992, 90(4): 642-658.
|
[13] |
宋利明, 高攀峰. 马尔代夫海域延绳钓渔场大眼金枪鱼的钓获水层、水温和盐度[J]. 水产学报, 2006, 30(3): 335-340.
|
[14] |
张艳波, 戴小杰, 朱江峰, 等. 东南太平洋金枪鱼延绳钓主要渔获种类垂直分布[J]. 应用生态学报, 2015, 26(3): 912-918.
|
[15] |
沈智宾, 陈新军, 汪金涛. 基于海表温度和海面高度的东太平洋大眼金枪鱼渔场预测[J]. 海洋科学, 2015, 39(10): 45-51. doi: 10.11759/hykx20140621002
|
[16] |
李杰, 晏磊, 杨炳忠, 等. 罩网兼作金枪鱼延绳钓的钓钩深度与渔获水层分析[J]. 海洋渔业, 2018, 40(6): 660-669. doi: 10.3969/j.issn.1004-2490.2018.06.003
|
[17] |
宋利明, 李轶婷. 基于龙格库塔法的漂流延绳钓沉降过程数值模拟[J]. 中国水产科学, 2022, 29(1): 157-169. doi: 10.12264/JFSC2021-0076
|
[18] |
宋利明, 张智, 袁军亭, 等. 基于最小势能原理的延绳钓渔具作业状态数值模拟[J]. 中国水产科学, 2011, 18(5): 1170-1178.
|
[19] |
宋利明, 张智, 袁军亭, 等. 基于有限元分析的漂流延绳钓渔具作业状态数值模拟[J]. 海洋与湖沼, 2011, 42(2): 256-261. doi: 10.11693/hyhz201102014014
|
[20] |
WAN T R, TANG W, HUANG D. Real-time simulation of long thin flexible objects in interactive virtual environments[C]//GREEN M. Proceedings of the 18th ACM symposium on virtual reality software and technology. New York: ACM, 2012: 85-92.
|
[21] |
谢海波, 谭晓兰, 甘亮. 基于质量弹簧系统的实时绳索仿真方法[J]. 暨南大学学报(自然科学与医学版), 2013, 34(5): 479-482.
|
[22] |
SONG L, LI J, GAO P, et al. Modeling the hook depth distribution of pelagic longlining in the equatorial area of Indian Ocean[J]. J Ocean U China, 2012, 11(4): 547-556. doi: 10.1007/s11802-012-2081-9
|
[23] |
王飞, 黄国, 刘天威. 规则波作用下水下拖缆数值分析研究[J]. 海洋工程, 2006, 24(1): 92-97. doi: 10.3969/j.issn.1005-9865.2006.01.015
|
[24] |
詹杰民, 胡由展, 赵陶, 等. 渔网水动力试验研究及分析[J]. 海洋工程, 2002, 20(2): 49-53, 59. doi: 10.3969/j.issn.1005-9865.2002.02.009
|
[25] |
苏志鹏, 许柳雄, 朱国平, 等. 拖速和曳纲长度对南极磷虾中层拖网网位的影响[J]. 中国水产科学, 2017, 24(4): 884-892.
|
[26] |
张泓奕. 金枪鱼延绳钓水动力性能与钓钩深度数值模拟研究[D]. 上海: 上海海洋大学, 2023: 19-23.
|
[27] |
曹道梅. 金枪鱼延绳钓渔具动力学模拟[D]. 上海: 上海海洋大学, 2011: 16-28.
|
[28] |
冯维山. 沉力分布对平面网片沉降特性影响的试验[J]. 大连水产学院学报, 1996, 11(4): 37-44.
|
[29] |
梁民仓, 尹勇. 船用柔性绳索的仿真研究[J]. 系统仿真学报, 2016, 28(9): 1945-1949, 1956.
|
[30] |
ABDULSALAM A, SENU N, MAJID Z A, et al. Development of high-order adaptive multi-step Runge-Kutta-Nyström method for solving special second-order ODEs[J]. Math Comput Simulat, 2024, 216: 104-125. doi: 10.1016/j.matcom.2023.09.006
|
[31] |
刘伟涛, 李萍, 李德豪, 等. 方差分析数据处理系统的设计[J]. 计算机与应用化学, 2015, 32(5): 583-586.
|
[32] |
李佐胜, 姚建刚, 杨迎建, 等. 基于方差分析的绝缘子红外热像特征选择方法[J]. 电网技术, 2009, 33(1): 92-96.
|
[33] |
杨孟刚, 陈政清. 基于UL列式的两节点悬链线索元非线性有限元分析[J]. 土木工程学报, 2003, 36(8): 63-68. doi: 10.3321/j.issn:1000-131X.2003.08.012
|
[34] |
孟阳君. 不同边界条件矩形薄板受力分析的解析解法[J]. 湖南交通科技, 2021, 47(4): 92-98. doi: 10.3969/j.issn.1008-844X.2021.04.019
|
[35] |
ZHANG X F, WANG M F, XU L X. Modeling and visualization of part behavior of purse seine using R language[C]//QIU P H, XIANG Y, DING Y S, et al. The 4th International Congress on Image and Signal Processing. Shanghai: IEEE, 2011: 2080-2083.
|
[36] |
杨阳. 龙格库塔法求模糊微分方程的数值解[D]. 哈尔滨: 哈尔滨工业大学, 2015: 10-18.
|
[37] |
LEI S X, WANG Y F, WANG X H, et al. A high-accurate time integration method for solving structural vibration responses[J]. Math Probl Eng, 2022, 2022: 563393.
|
[38] |
BU S, JUNG W K, KIM P. An error embedded Runge-Kutta method for initial value problems[J]. Kyungpook Math J, 2016, 56(2): 311-327. doi: 10.5666/KMJ.2016.56.2.311
|
[39] |
梁银凡, 邓旭辉, 郭小刚, 等. 面外法向集中力作用下水平悬链线的构形与张力研究[J]. 应用力学学报, 2023, 40(6): 1393-1403.
|
[40] |
郭小刚, 周涛, 金星, 等. 水平悬链线中点集中力作用下的非线性分析及计算[J]. 计算力学学报, 2018, 30(4): 514-520. doi: 10.7511/jslx20170304001
|
[41] |
朱瑞景. 基于静力分析的悬链线建模与仿真研究[D]. 大连: 大连海事大学, 2017: 28-31.
|