Citation: | WU Fan, LI Yunfeng, MA Baoshan, ZHANG Yan, RU Huijun, SHEN Ziwei, WEI Nian. Fish community structure and environmental impact factors in Three Gorges Reservoir during summer and autumn[J]. South China Fisheries Science. DOI: 10.12131/20240199 |
The Three Gorges Reservoir (TGR) is a critical area for fish biodiversity conservation in the Yangtze River due to its rich fish resources. However, significant changes in fish communities have occurred following the impoundment and increasing human activities in the TGR area. Thus, based on the surveys conducted in summer and autumn of 2018, we analyzed the dominant species composition, distribution patterns, and environmental relationships of fish species in four sections of the TGR, namely Mudong, Fuling, Yunyang, and Wushan section, so as to provide a scientific basis for the subsequent assessment of the effectiveness of the fishing ban. A total of 94 fish species from 9 orders and 21 families had been recorded, including 13 exotic species and 15 species endemic to the upper Yangtze River. The results reveal significant spatial differences in fish community structures across the four sections (p<0.05), while seasonal differences were not significant (p<0.05). Dominant species results indicate a trend towards smaller-sized fish communities. The abundance-biomass comparison curves show that the W values for Mudong, Yunyang, and Wushan were −0.022, −0.078, and −0.225, respectively, indicating varying levels of disturbance, whereas Fuling had a W value of 0.040, suggesting a relatively stable community structure in this section. Kendall's Tau correlation and redundancy analysis demonstrate that the abundance of Saurogobio dabryi and Rhinogobio cylindricus increased with distance from the Three Gorges Dam and shallower water depths, while Pelteobagrus nitidus, Culter alburnus, and Coilia brachygnathus were more abundant closer to the Three Gorges Dam and in deeper water. Hemiculter bleekeri showed a significant negative correlation with water transparency, while Pseudobrama simoni was positively correlated with water temperature and chlorophyll a concentration.
[1] |
BAO Y H, GAO P, HE X B. The water-level fluctuation zone of Three Gorges Reservoir: a unique geomorphological unit[J]. Earth Sci Rev, 2015, 150: 14-24. doi: 10.1016/j.earscirev.2015.07.005
|
[2] |
FAN X G, WEI Q W, CHANG J B, et al. A review on conservation issues in the upper Yangtze River-a last chance for a big challenge: can Chinese paddlefish (Psephurus gladius), Dabry's sturgeon, (Acipenser dabryanus) and other fish species still be saved?[J]. J Appl Ichthyol, 2006, 22: 32-39. doi: 10.1111/j.1439-0426.2007.00926.x
|
[3] |
廖传松, 陈思宝, 叶少文, 等. 三峡水库鱼类群落结构及主要鱼类种群年龄与生长[J]. 中国水产科学, 2021, 28(6): 695-702. doi: 10.12264/JFSC2020-0452
|
[4] |
YANG Z, PAN X J, HU L, et al. Effects of upstream cascade dams and longitudinal environmental gradients on variations in fish assemblages of the Three Gorges Reservoir[J]. Ecol Freshw Fish, 2021, 30(4): 503-518. doi: 10.1111/eff.12600
|
[5] |
ANSARI Z A, CHATTERJI A, INGOLE B S, et al. Community structure and seasonal variation of an inshore demersal fish community at Goa, west coast of India[J]. Estuar Coast Shelf Sci, 1995, 41(5): 593-610. doi: 10.1016/0272-7714(95)90029-2
|
[6] |
GALIB S M, RASHID M A, CHAKI N, et al. Seasonal variation and community structure of fishes in the Mahananda River with special reference to conservation issues[J]. J Fish, 2016, 4(1): 325-334. doi: 10.17017/j.fish.110
|
[7] |
BLOOMFIELD E J, GUZZO M M, MIDDEL T A, et al. Seasonality can affect ecological interactions between fishes of different thermal guilds[J]. Front Ecol Evol, 2022, 10: 986459. doi: 10.3389/fevo.2022.986459
|
[8] |
KONDOWE B N, MASESE F O, RABURU P O, et al. Seasonality in environmental conditions drive variation in plankton communities in a shallow tropical lake[J]. Front Water, 2022, 4: 883767. doi: 10.3389/frwa.2022.883767
|
[9] |
YIN H, WANG S, YANG J, et al. Fish community and its relationships with environmental variables in the channel connecting Poyang Lake and the Yangtze River[J]. Aquat Sci, 2024, 86(2): 59-87. doi: 10.1007/s00027-024-01075-w
|
[10] |
张伟, 翟东东, 熊飞, 等. 三峡库区鱼类群落结构和功能多样性[J]. 生物多样性, 2023, 31(2): 87-99. doi: 10.17520/biods.2022136
|
[11] |
徐忠, 徐欣. 长江十年禁捕政策的综合效益评价: 以湖南省14个区 (县) 为例[J]. 长江流域资源与环境, 2024, 33(7): 1453-1461.
|
[12] |
朱松泉. 中国淡水鱼类检索[M]. 南京: 江苏科学技术出版社, 1995: 1-549.
|
[13] |
陈宜瑜. 中国动物志·硬骨鱼纲·鲤形目(中卷)[M]. 北京: 科学出版社, 1998: 9-454.
|
[14] |
褚新洛, 郑葆珊, 戴定远. 中国动物志·硬骨鱼纲·鲇形目[M]. 北京: 科学出版社, 1999: 34-191.
|
[15] |
HUANG L M, XU H Q, YU J Y, et al. The ecological niches and interspecific associations of the dominant fishes in the Xiamen Seas, China[J]. Fishes, 2024, 9(9): 354-372. doi: 10.3390/fishes9090354
|
[16] |
杨志, 唐会元, 朱迪, 等. 三峡水库175 m试验性蓄水期库区及其上游江段鱼类群落结构时空分布格局[J]. 生态学报, 2015, 35(15): 5064-5075.
|
[17] |
中国水产科学研究院长江水产研究所. 《三峡地区渔业资源开发规划研究》成果报告[R]. 荆州: 中国水产科学研究院长江水产研究所, 1990: 67-72.
|
[18] |
吴强, 段辛斌, 徐树英, 等. 长江三峡库区蓄水后鱼类资源现状[J]. 淡水渔业, 2007, 37(2): 70-75. doi: 10.3969/j.issn.1000-6907.2007.02.018
|
[19] |
OPPERMAN J J, CARVALLO J P, KELMAN R, et al. Balancing renewable energy and river resources by moving from individual assessments of hydropower projects to energy system planning[J]. Front Environ Sci, 2023, 10: 1036653. doi: 10.3389/fenvs.2022.1036653
|
[20] |
LIU X J, QIN J J, XU Y, et al. Biodiversity decline of fish assemblages after the impoundment of the Three Gorges Dam in the Yangtze River Basin, China[J]. Rev Fish Biol Fishes, 2019, 29: 177-195. doi: 10.1007/s11160-019-09548-0
|
[21] |
徐宾铎, 金显仕, 梁振林. 黄海夏季不同取样网具渔获物组成比较分析[J]. 青岛海洋大学学报 (自然科学版), 2002, 32(2): 224-230.
|
[22] |
FETHERMAN E R, LEPAK J M. Addressing depletion failure and estimating gear efficiency using back-calculation of capture probabilities[J]. Fish Res, 2013, 147: 284-289. doi: 10.1016/j.fishres.2013.06.005
|
[23] |
方康. 重要外来养殖鱼类生物入侵风险评估[D]. 荆州: 长江大学, 2023: 11-21.
|
[24] |
ZHAI D D, LI B, XIONG F, et al. Population genetics reveals invasion origin of Coilia brachygnathus in the Three Gorges Reservoir of the Yangtze River, China[J]. Front Ecol Evol, 2022, 10: 783215. doi: 10.3389/fevo.2022.783215
|
[25] |
杨帆. 短颌鲚、太湖新银鱼三峡库区与洞庭湖群体间遗传多样性比较[D]. 重庆: 西南大学, 2019: 12-18.
|
[26] |
WANG J Z, LI L, XU J, et al. Initial response of fish trophic niche to hydrological alteration in the upstream of Three Gorges Dam[J]. Ecol Process, 2016, 5: 1-9.
|
[27] |
LIN P C, CHEN L, GAO X C, et al. Spatiotemporal distribution and species composition of fish assemblages in the transitional zone of the three Gorges Reservoir, China[J]. Water, 2020, 12(12): 3514. doi: 10.3390/w12123514
|
[28] |
CHEN X, LI Z F, BODA P, et al. Environmental filtering in the dry season and spatial structuring in the wet: different fish community assembly rules revealed in a large subtropical floodplain lake[J]. Environ Sci Pollut Res, 2022, 29(46): 69875. doi: 10.1007/s11356-022-20529-y
|
[29] |
LI Q, LIU X G, ZHONG Y L, et al. Precipitation changes in the Three Gorges Reservoir Area and the relationship with water level change[J]. Sensors, 2021, 21(18): 6110. doi: 10.3390/s21186110
|
[30] |
CHENG Q Q, LU D R, MA L. Morphological differences between close populations discernible by multivariate analysis: a case study of genus Coilia (Teleostei: Clupeiforms)[J]. Aquat Living Resour, 2005, 18(2): 187-192. doi: 10.1051/alr:2005020
|
[31] |
董纯, 杨志, 龚云, 等. 三峡库区干流鱼类资源现状与物种多样性保护[J]. 水生态学杂志, 2019, 40(1): 15-21.
|
[32] |
GAO X, ZENG Y, WANG J W, et al. Immediate impacts of the second impoundment on fish communities in the Three Gorges Reservoir[J]. Environ Biol Fish, 2010, 87: 163-173. doi: 10.1007/s10641-009-9577-1
|
[33] |
WANG Y K, QIU R J, TAO Y W, et al. Influence of the impoundment of the Three Gorges Reservoir on hydrothermal conditions for fish habitat in the Yangtze River[J]. Environ Sci Pollut Res, 2023, 30(4): 10995-11011.
|
[34] |
熊星, 李英文, 田辉伍, 等. 长江上游圆筒吻鮈生长与食性[J]. 生态学杂志, 2013, 32(4): 905-917.
|
[35] |
熊飞, 刘红艳, 段辛斌, 等. 长江上游朱杨溪江段圆筒吻鮈种群参数和资源量[J]. 生态学报, 2015, 35(22): 7320-7327.
|
[36] |
吕振宇, 曾燏, 熊小琴, 等. 嘉陵江不同江段蛇鮈的食性分析[J]. 四川动物, 2019, 38(1): 68-76. doi: 10.11984/j.issn.1000-7083.20180104
|
[37] |
王丽婧, 李虹, 杨正健, 等. 三峡水库蓄水运行初期 (2003—2012年) 水环境演变特征的“四大效应”[J]. 环境科学研究, 2020, 33(5): 1109-1118.
|
[38] |
PERERA H A C C, LI Z J, de SILVA S S, et al. Effect of the distance from the dam on river fish community structure and compositional trends, with reference to the Three Gorges Dam, Yangtze River, China[J]. Acta Hydrobiol Sin, 2014, 38(3): 438-445. doi: 10.3724/issn1000-3207-2014-3-438-d
|
[39] |
LIAO C S, CHEN S B, de SILVA S S, et al. Spatial changes of fish assemblages in relation to filling stages of the Three Gorges Reservoir, China[J]. J Appl Ichthyol, 2018, 34(6): 1293-1303. doi: 10.1111/jai.13798
|
[40] |
WU J M, WU J P, YE H, et al. Correlations between environmental factors and the distribution of juvenile Hucho bleekeri in the Taibai River, Shaanxi, China[J]. Fishes, 2023, 8(7): 379-391. doi: 10.3390/fishes8070379
|
[41] |
WAN R, SONG P B, LI Z G, et al. Use of ensemble model for modeling the larval fish habitats of different ecological guilds in the Yangtze Estuary[J]. Fishes, 2023, 8(4): 209-226. doi: 10.3390/fishes8040209
|
[42] |
WU Z S, HE H, CAI Y J, et al. Spatial distribution of chlorophyll a and its relationship with the environment during summer in Lake Poyang: a Yangtze-connected lake[J]. Hydrobiologia, 2014, 732: 61-70. doi: 10.1007/s10750-014-1844-2
|
[43] |
徐东坡, 张敏莹, 周彦锋, 等. 长江常熟江段似鳊的生长特征及形态特性[J]. 大连海洋大学学报, 2016, 29(4): 397-402.
|
[44] |
王东, 罗进勇, 熊飞, 等. 三峡库区干支流似鳊群体的遗传结构[J]. 水生态学杂志, 2023, 44(4): 124-131.
|