Citation: | FENG Yuantai, SHI Rongjun, LI Junwei, OU Youjun, QI Zhanhui, HUANG Honghui, JIA Xuying. Analysis of changes in intestinal structure and microbial composition in Elentheronema tetradactylum juvenile at different days of age[J]. South China Fisheries Science, 2025, 21(1): 153-163. DOI: 10.12131/20240198 |
In order to explore the intestinal development and microbial communities of Elentheronema tetradactylum juvenile, and to provide a scientific basis for its healthy breeding and feeding management, we investigated the growth performance, intestinal structure and gut microbiota of the juveniles at different days of age (37, 44, 58, 72, 86, 114). The results show that there were significant differences in the growth performance among different days of age (p<0.05). As the age of the juveniles increased, the length and width of the villi, the thickness of the myenteric layer, and the number of cup-shaped cells increased gradually and became more completed. On Day 58, the morphological structure of the intestinal tract was relatively well-developed. A total of 40 microbial phylum and 521 microbial genus were identified in the intestine. Proteobacteria, Actinobacteria and Firmicutes were the dominant phylum, which accounted for 78.69% of the total intestinal microbiota. On genus level, there were significant differences in the relative abundances of microbial genus at different days of age (p<0.05), with large variations in abundance. Pearson correlation analysis reveals that the villus length, width, and muscular thickness were negatively correlated with Gemmobacter and Defluviimonas (p<0.05), but positively correlated with Burkholderia, Vibrio and Ralstonia (p<0.05). The relative abundances of pathogenic genus (Ralstonia, Vibrio) exhibited an increase after being fed with the pellet feed. It is not advisable to feed E. tetradactylum juvenile with an excessive amount of pellet feed at early stage, and it should enhance the water quality monitoring and pathogen prevention during the feed transition period.
[1] |
WANG J J, PENG S, FEI Y, et al. Low mtDNA Cytb diversity and shallow population structure of Eleutheronema tetradactylum in the East China Sea and the South China Sea[J]. Biochem Syst Ecol, 2014, 55: 268-274. doi: 10.1016/j.bse.2014.03.026
|
[2] |
MOORE B R, STAPLEY J, ALLLSOP Q, et al. Stock structure of blue threadfin Eleutheronema tetradactylum across northern Australia, as indicated by parasites[J]. J Fish Biol, 2011, 78(3): 923-936. doi: 10.1111/j.1095-8649.2011.02917.x
|
[3] |
郭海波, 吴益春, 罗海军, 等. 四指马鲅鱼的营养成分分析[J]. 食品安全质量检测学报, 2017, 8(1): 88-92.
|
[4] |
BRUIN G D, RUSSELL B, BOGUSCH A. FAO species identification field guide for fishery purposes. Fishes of the Cambodian Mekong[J]. 1996, 2: 156-158.
|
[5] |
牛莹月, 罗志平, 区又君, 等. 不同盐度对四指马鲅幼鱼存活及鳃组织形态变化的影响[J]. 南方农业学报, 2021, 52(6): 1719-1726.
|
[6] |
蓝军南, 区又君, 温久福, 等. 四指马鲅卵巢发育和卵子发生的组织学观察[J]. 中国水产科学, 2020, 27(12): 1415-1426.
|
[7] |
谢木娇, 区又君, 李加儿, 等. 四指马鲅 (Eleutheronema tetradactylum) 消化系统胚后发育组织学观察[J]. 渔业科学进展, 2017, 38(2): 50-58.
|
[8] |
区又君, 刘奇奇, 温久福, 等. 急性低温胁迫对四指马鲅幼鱼肝脏、肌肉以及鳃组织结构的影响[J]. 生态科学, 2018, 37(5): 53-59.
|
[9] |
江梁正, 王珺, 区又君, 等. 2种盐度池塘养殖四指马鲅的肌肉营养组成分析[J]. 中国渔业质量与标准, 2023, 13(2): 11-17.
|
[10] |
李俊伟, 区又君, 温久福, 等. 室内循环水和池塘养殖四指马鲅的生长性能及形态性状与体质量的相关性研究[J]. 南方水产科学, 2020, 16(1): 27-35.
|
[11] |
高淼, 周秋白, 王自蕊, 等. 饲料原料粉碎粒度对大鳞副泥鳅生长性能的影响[J]. 饲料工业, 2018, 39(22): 21-25.
|
[12] |
李芳源, 王常安, 刘红柏. 丁酸梭菌对水产动物营养及免疫研究进展[J]. 水产学杂志, 2021, 34(5): 104-110.
|
[13] |
梁祖銮, 赵吉臣, 廖敏泽, 等. 不同生长阶段中国花鲈肠道和环境微生物群落分析[J]. 大连海洋大学学报, 2024, 39(2): 215-224.
|
[14] |
GAO Y J, YANG H J, LIU Y J, et al. Effects of graded levels of threonine on growth performance, biochemical parameters and intestine morphology of juvenile grass carp Ctenopharyngodon idella[J]. Aquaculture, 2014, 424: 113-119.
|
[15] |
郭鑫伟, 张洋, 迟淑艳, 等. 三种铁源对珍珠龙胆石斑鱼幼鱼生长性能、肝脏抗氧化酶活性及肠道发育形态的影响[J]. 中国海洋大学学报, 2020, 50(11): 53-61.
|
[16] |
马兴宇, 唐忠林, 陈树桥, 等. 转食饲料对大口黑鲈幼鱼的存活率、抗氧化酶和消化酶活性及肠道菌群的影响[J]. 中国水产科学, 2024, 31(4): 403-415.
|
[17] |
范梓健, 张紫玥, 曹建萌, 等. 不同开口饵料对罗非鱼发育早期肠道菌群结构的影响[J]. 农业生物技术学报, 2023, 31(5): 1032-1042.
|
[18] |
孟晓林, 李文均, 聂国兴. 鱼类肠道菌群影响因子研究进展[J]. 水产学报, 2019, 43(1): 143-155.
|
[19] |
张碧云, 杨红玲, 汪攀, 等. 鱼类肠道微生物与宿主免疫系统相互作用研究进展[J]. 微生物学报, 2021, 61(10): 3046-3058.
|
[20] |
郁维娜, 戴文芳, 陶震, 等. 健康与患病凡纳滨对虾肠道菌群结构及功能差异研究[J]. 水产学报, 2018, 42(3): 399-409.
|
[21] |
李鸣霄, 强俊, 徐钢春, 等. 不同养殖阶段的大口黑鲈肠道结构和肠道微生物组成变化的比较[J]. 动物营养学报, 2023, 35(9): 5886-5903.
|
[22] |
BOILEN E, RIDEOUT J R, DILLON M R, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2[J]. Nat Biotechnol, 2019, 37(8): 852-857. doi: 10.1038/s41587-019-0209-9
|
[23] |
SEGATA N, LZARD J, WALDRON L, et al. Metagenomic biomarker discovery and explanation[J]. Genome Biol, 2011, 12(6): 60. doi: 10.1186/gb-2011-12-6-r60
|
[24] |
LI X F, TIAN H Y, ZHANG D Z, et al. Feeding frequency affects stress, innate immunity and disease resistance of juvenile blunt snout bream Megalobrama amblycephala[J]. Fish Shellfish Immunol, 2014, 38(1): 80-87. doi: 10.1016/j.fsi.2014.03.005
|
[25] |
BUDDINGTON R K. Digestive secretions of lake sturgeon, Acipenser fulvescens, during early development[J]. Fish Shellfish Immunol, 1985, 26(6): 715-723.
|
[26] |
谭泽宇, 李涛, 姜敬哲, 等. 喷点雪印小丑鱼的胚胎及仔、稚、幼鱼形态发育观察[J]. 南方水产科学, 2024, 20(2): 73-82. doi: 10.12131/20230119
|
[27] |
黄伟卿, 宋炜, 刘铮, 等. 大黄鱼仔、稚鱼期的脊椎骨及附肢骨生长发育研究[J]. 海洋渔业, 2024, 3: 1-10.
|
[28] |
兰真强, 郑纪涛, 陈芸, 等. 丝鳍圆天竺鲷的繁殖习性、胚胎发育和胚后发育观察[J]. 热带海洋学报, 2024, 43(1): 116-125.
|
[29] |
HUANG B C, ZHANG S, DONG X H, et al. Effects of fishmeal replacement by black soldier fly on growth performance, digestive enzyme activity, intestine morphology, intestinal flora and immune response of pearl gentian grouper (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂)[J]. Fish Shellfish Immunol, 2022, 120: 497-506. doi: 10.1016/j.fsi.2021.12.027
|
[30] |
赵彦花, 区又君, 李加儿, 等. 黄唇鱼消化系统组织结构及黏液细胞分布特征[J]. 渔业科学进展, 2019, 40(3): 80-86.
|
[31] |
曹剑香, 简纪常, 黄洋, 等. 多鳞鱚消化系统的形态学和组织学研究[J]. 水产科学, 2010, 29(6): 339-343.
|
[32] |
区又君, 何永亮, 李加儿. 卵形鲳鲹消化系统的胚后发育[J]. 台湾海峡, 2011, 30(4): 533-539.
|
[33] |
向佳丽.南极鱼类肠道微生物群落结构特征及其与环境因子关系的研究[D]. 上海: 上海海洋大学, 2023: 44-46.
|
[34] |
SYLVAIN F E, CHEAIB B, LLEWELLYN M, et al. PH drop impacts differentially skin and gut microbiota of the Amazonian fish tambaqui (Colossoma macropomum)[J]. Sci Rep, 2016, 6(1): 32032. doi: 10.1038/srep32032
|
[35] |
STEPHENS W Z, BURNS A R, STAGAMAN K, et al. The composition of the zebrafish intestinal microbial community varies across development[J]. ISME J, 2016, 10(3): 644-654. doi: 10.1038/ismej.2015.140
|
[36] |
NIELSEN S, WILKES W J, VERGES A, et al. Microbiome patterns across the gastrointestinal tract of the rabbitfish Siganus fuscescens[J]. PeerJ, 2017, 5: e3317. doi: 10.7717/peerj.3317
|
[37] |
HUANG Q, SHAM R C, DENG Y, et al. Diversity of gut microbiomes in marine fishes is shaped by host–related factors[J]. Mol Ecol, 2020, 29(24): 5019-5034. doi: 10.1111/mec.15699
|
[38] |
高权新, 吴天星, 王进波. 肠道微生物与寄主的共生关系研究进展[J]. 动物营养学报, 2010, 22(3): 519-526.
|
[39] |
LI W H, ZHOU Z X, LI Q H, et al. Successional changes of microbial communities and host-microbiota interactions contribute to dietary adaptation in allodiploid hybrid fish[J]. Microb Ecol, 2023, 85(4): 1190-1201. doi: 10.1007/s00248-022-01993-y
|
[40] |
ZHAO C Y, WANG J, REN W H, et al. Histological, immune, and intestine microbiota responses of the intestine of rainbow trout (Oncorhynchus mykiss) to high temperature stress[J]. Aquaculture, 2024, 582: 740465. doi: 10.1016/j.aquaculture.2023.740465
|
[41] |
SHANG Y Q, ZHONG H M, LIU G, et al. Characteristics of microbiota in different segments of the digestive tract of Lycodon rufozonatus[J]. Animals, 2023, 13(4): 731. doi: 10.3390/ani13040731
|
[42] |
WANG W Z, HUANG J S, ZHANG J D, et al. Effects of hypoxia stress on the intestinal microflora of juvenile of cobia (Rachycentron canadum)[J]. Aquaculture, 2021, 536: 736419. doi: 10.1016/j.aquaculture.2021.736419
|
[43] |
ZHAO Y, LI S P, LESSING D J, et al. The attenuating effects of synbiotic containing Cetobacterium somerae and Astragalus polysaccharide against trichlorfon-induced hepatotoxicity in crucian carp (Carassius carassius)[J]. J Hazard Mater, 2024, 461: 132621. doi: 10.1016/j.jhazmat.2023.132621
|
[44] |
OFEK T, LALZAR M, LAVIAD S, et al. Comparative study of intestinal microbiota composition of six edible fish species[J]. Front Microbiol, 2021, 12: 760266. doi: 10.3389/fmicb.2021.760266
|
[45] |
谷雪勤, 王庆奎, 王洋. 海水鱼循环水养殖系统中细菌群落结构研究进展[J]. 天津农学院学报, 2022, 29(2): 76-84.
|
[46] |
WEI N, WANG C C, XIAO S J, et al. Intestinal microbiota in large yellow croaker, Larimichthys crocea, at different ages[J]. J World Aquacult Soc, 2018, 49(1): 256-267. doi: 10.1111/jwas.12463
|
[47] |
ZHANG Y, WEN B, MENG L J, et al. Dynamic changes of gut microbiota of discus fish (Symphysodon haraldi) at different feeding stages[J]. Aquaculture, 2021, 531: 735912. doi: 10.1016/j.aquaculture.2020.735912
|
[48] |
CICALA F, LAGO L A, GOMEZ G B, et al. Gut microbiota shifts in the giant tiger shrimp, Penaeus monodon, during the postlarvae, juvenile, and adult stages[J]. Aquac Int, 2020, 28(4): 1421-1433. doi: 10.1007/s10499-020-00532-1
|
[49] |
李路宽. 四种新型蛋白源替代鱼粉对大口黑鲈肠道健康的影响[D]. 武汉: 华中农业大学, 2023: 39-40.
|
[50] |
汤菊芬, 黄瑜, 蔡佳, 等. 中草药复合微生态制剂对吉富罗非鱼 (Oreochromis niloticus) 生长、肠道菌群及抗病力的影响[J]. 渔业科学进展, 2016, 37(4): 104-109.
|
[51] |
李艳丽, 杨垒, 张志昊, 等. 好氧反硝化细菌Burkholderia sp. ZH8的脱氮特性与生物强化作用研究[J]. 中国环境科学, 2024, 44(8): 4282-4291.
|
[52] |
潘丹, 黄巧云, 陈雯莉. 两株异养硝化细菌的分离鉴定及其脱氮特性[J]. 微生物学报, 2011, 51(10): 1382-1389.
|
[53] |
杨浩, 张国珍, 杨晓妮, 等. 16S rRNA高通量测序研究集雨窖水中微生物群落结构及多样性[J]. 环境科学, 2017, 38(4): 1704-1716.
|
[54] |
DACEWICA E, LENART B A. Waste polyurethane foams as biomass carriers in the treatment process of domestic sewage with increased ammonium nitrogen content[J]. Materials, 2023, 16(2): 619. doi: 10.3390/ma16020619
|
[55] |
刘增新, 柳学周, 史宝, 等. 牙鲆 (Paralichthys olivaceus) 仔稚幼鱼肠道菌群结构比较分析[J]. 渔业科学进展, 2017, 38(1): 111-119.
|
[56] |
王雨婷, 周荣翔, 李霁虹, 等. 抗弧菌光合细菌的分离鉴定及对氨氮和亚硝态氮的降解特性[J]. 南方水产科学, 2021, 17(5): 26-33. doi: 10.12131/20210016
|
[57] |
付保荣, 曹向宇, 冷阳, 等. 光合细菌对水产养殖水质和水生生物的影响[J]. 生态科学, 2008(2): 102-106. doi: 10.3969/j.issn.1008-8873.2008.02.007
|
[58] |
陈明霞, 李和阳, 李刚, 等. 深圳海域弧菌种类组成、数量分布及其与环境因子的关系研究[J]. 海洋学报, 2010, 32(5): 117-126.
|