YANG Liling, GUO Yingxiang, WEI Hongying, WANG Meng, FANG Yifei, ZHU Peng, JIANG Jingzhe. Identification of a novel oyster-related circovirus genome compa-rative genome analysis of oyster-related circoviruses[J]. South China Fisheries Science, 2022, 18(4): 65-75. DOI: 10.12131/20210260
Citation: YANG Liling, GUO Yingxiang, WEI Hongying, WANG Meng, FANG Yifei, ZHU Peng, JIANG Jingzhe. Identification of a novel oyster-related circovirus genome compa-rative genome analysis of oyster-related circoviruses[J]. South China Fisheries Science, 2022, 18(4): 65-75. DOI: 10.12131/20210260

Identification of a novel oyster-related circovirus genome compa-rative genome analysis of oyster-related circoviruses

More Information
  • Received Date: September 08, 2021
  • Revised Date: November 02, 2021
  • Available Online: November 28, 2021
  • The lack of pathogen genome information is one of the main reasons for the slow progress of oyster disease research. In order to identify more oyster-associated viruses, based on the previously obtained viromic data of oysters (Crassostrea hongkongensis) cultured in multiple locations along the coast of the South China Sea, after quality control, assembly, and species annotation of the sequencing data, we selected the putative circovirus genome sequences for the construction of the phylogenetic tree, genome comparison, protein domain analysis, structure prediction and virus abundance analysis, which provides references for the research of oyster disease. The results show that five viral sequences clustered with known circoviruses in a large branch, indicating that they are members of the Circoviridae family. The five viral genome sequences all contained replication protein genes, with the highest similarity to a replication protein sequence of arthropod circovirus. The five sequences and seven other public database sequences formed an independent sub-branch. Viruses on this branch were mostly from animal-related samples. Based on the domain analysis (SMART), replicase conserved domains were identified in most sequences.
  • [1]
    李辉尚, 李坚明, 秦小明, 等. 中国牡蛎产业发展现状、问题与对策——基于鲁、闽、 粤、桂四省区的实证分析[J]. 海洋科学, 2017, 41(11): 125-129.
    [2]
    FARLEY C A, BANFIELD W G, KASNIC G J R, FOSTER W S. Oyster herpes-type virus[J]. Science, 1972, 178(4062): 759-760. doi: 10.1126/science.178.4062.759
    [3]
    MARTENOT C, TRAVAILLÉ E, LETHUILLIER O, et al. Genome exploration of six variants of the otreid hrpesvirus 1 and characterization of large deletion in OsHV-1μvar specimens[J]. Virus Res, 2013, 178(2): 462-470. doi: 10.1016/j.virusres.2013.08.006
    [4]
    MARTENOT C, LETHUILLIER O, FOUROUR S, et al. Detection of undescribed ostreid herpesvirus 1 (OsHV-1) specimens from Pacific oyster, Crassostrea gigas[J]. J Invertebr Pathol, 2015, 132: 182-189. doi: 10.1016/j.jip.2015.10.005
    [5]
    RENAULT T, NOVOA B. Viruses infecting bivalve molluscs[J]. Aquat Living Resour, 2004, 17(4): 397-409. doi: 10.1051/alr:2004049
    [6]
    DELMOTTE J, CHAPARRO C, GALINIER R, et al. Contribution of viral genomic diversity to oyster susceptibility in the Pacific oyster mortality syndrome[J]. Front Microbiol, 2020, 11: 1579. doi: 10.3389/fmicb.2020.01579
    [7]
    GUO X, FORD S E. Infectious diseases of marine molluscs and host responses as revealed by genomic tools[J]. Phil Trans Royal Soc Lond, 2016, 371(1689): 20150206. doi: 10.1098/rstb.2015.0206
    [8]
    BRUM J R, IGNACIO-ESPINOZA J C, ROUX S, et al. Patterns and ecological drivers of ocean viral communities[J]. Science, 2015, 348(6237): 1261498-1261498. doi: 10.1126/science.1261498
    [9]
    ZHANG X M, HUANG S B, JIN T, et al. Discovery and high prevalence of phasi charoen-like virus in field-captured Aedes aegypti in South China[J]. Virology, 2018, 523: 35-40. doi: 10.1016/j.virol.2018.07.021
    [10]
    FILIPASILVA A, PARREIRA R, MARTÍNEZPUCHOL S, et al. The unexplored virome of two atlantic coast fish: contribution of next-generation sequencing to fish virology[J]. Foods (Basel, Switzerland), 2020, 9(11): 1634.
    [11]
    CALLANAN J, STOCKDALE S R, SHKOPOROV A, et al. Biases in viral metagenomics-based detection, cataloguing and quantification of bacteriophage genomes in human faeces, a review[J]. Microorganisms, 2021, 9(3): 524. doi: 10.3390/microorganisms9030524
    [12]
    方艺菲. 华南沿海牡蛎体内病毒多样性及群落结构研究[D]. 上海: 上海海洋大学, 2021: 1-62.
    [13]
    CHEN S, ZHOU Y, CHEN Y, et al. Fastp: an ultra-fast all-in-one fastq preprocessor[J]. Bioinformatics, 2018, 34(17): i884-i890. doi: 10.1093/bioinformatics/bty560
    [14]
    LI D, LIU C M, LUO R, et al. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph[J]. Bioinformatics, 2015, 31(10): 1674-1676.
    [15]
    TING H F, SADAKANE K, LUO R B, et al. MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices[J]. Methods: Companion Methods Enzymol, 2016, 102: 3-11. doi: 10.1016/j.ymeth.2016.02.020
    [16]
    BUCHFINK B, XIE C, HUSON D H. Fast and sensitive protein alignment using diamond[J]. Nat Methods, 2015, 12: 59-60. doi: 10.1038/nmeth.3176
    [17]
    DANIEL H H, SINA B, ISABELL F, et al. MEGAN community edition-interactive exploration and analysis of large-scale microbiome sequencing data[J]. PLOS Comput Biol, 2016, 12(6): e1004957.
    [18]
    NISHIMURA Y, YOSHIDA T, KURONISHI M, et al. ViPTree: the viral proteomic tree server[J]. Bioinformatics, 2017, 33(15): 2379-2380. doi: 10.1093/bioinformatics/btx157
    [19]
    KATOH K, STANDLEY D M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability[J]. Mol Bilol Evol, 2013, 30(4): 772-780. doi: 10.1093/molbev/mst010
    [20]
    SALVADOR C R, JOSÉ M S N, TONI G N. TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses[J]. Bioinformatics, 2009, 25(15): 1972-1973. doi: 10.1093/bioinformatics/btp348
    [21]
    TAMURA K, STECHER G, KUMAR S. MEGA11: molecular evolutionary genetics analysis version 11[J]. Mol Biol Evol, 2021, 38(7): 3022-3027. doi: 10.1093/molbev/msab120
    [22]
    米晓云, 吴建勇, 马文戈, 等. 鸽圆环病毒新疆株全基因组克隆与序列分析[J]. 塔里木大学学报, 2021, 33(1): 1-8. doi: 10.3969/j.issn.1009-0568.2021.01.001
    [23]
    ROB P, GEET D, MICHAEL I L, et al. Salmon provides fast and bias-aware quantification of transcript expression[J]. Nat Methods, 2017, 14(10): 417-419.
    [24]
    印丽云, 杨振才, 喻子牛, 等. 海水贝类养殖中的问题及对策[J]. 水产科学, 2012, 31(5): 302-305. doi: 10.3969/j.issn.1003-1111.2012.05.013
    [25]
    李亚楠. 贝类疱疹病毒组织亲嗜性及致病性研究[D]. 天津: 天津农学院, 2019: 1-75.
    [26]
    SHI M, EDWARD C H, ZHANG Y Z, et al. Redefining the invertebrate RNA virosphere[J]. Nature: Int Weekly J Sci, 2016, 540(7634): 539-543.
    [27]
    ROSANI U, GERDOL M. A bioinformatics approach reveals seven nearly-complete RNA-virus genomes in bivalve RNA-seq data[J]. Virus Res, 2017, 239: 33-42. doi: 10.1016/j.virusres.2016.10.009
    [28]
    IAN H, JACKSON E W, WILHELM R C, et al. Diversity of sea star-associated densoviruses and transcribed dndogenous viral elements of densovirus origin[J]. J Virol, 2020, 95(1): e01594-20.
    [29]
    CUI J, ZHANG Y Y, CHEN Y C, et al. Viromes in marine ecosystems reveal remarkable invertebrate RNA virus diversity[J]. Sci China Life Sci, 2021, 64: 1-12.
    [30]
    靳泽华, 黄英, 王泽宇, 等. 鸡传染性贫血病毒湖北分离株XH16全基因组序列分析[J]. 中国兽医杂志, 2020, 56(12): 1-8.
    [31]
    闫瑞杰. 猪圆环病毒病的危害[J]. 今日畜牧兽医, 2021, 37(7): 19-49. doi: 10.3969/j.issn.1673-4092.2021.07.012
    [32]
    HUI A, ALTAN E, SLOVIS N, et al. Circovirus in blood of a febrile horse with hepatitis.[J]. Viruses, 2021, 13(5): v13050944.
    [33]
    BREITBART M, DELWART E, ROSARIO K, et al. ICTV virus taxonomy profile: circoviridae[J]. J Gen Virol, 2017, 98(8): 1997-1998. doi: 10.1099/jgv.0.000871

Catalog

    Article views (791) PDF downloads (74) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return