Citation: | LIU Min, LIU Chang, LIU Guangfeng, ZHU Peng, XIE Keming, JIANG Jingzhe. Identification and evolutionary analysis of genome of oyster-associated Microviridae[J]. South China Fisheries Science, 2023, 19(5): 134-142. DOI: 10.12131/20230038 |
Oysters with filter feeding habits enrich a large number of pathogens including viruses in water, like a very valuable virus bank. To conduct an in-depth research on oyster-related viruses, we sequeced the Hong Kong oyster (Crassostrea hongkongensis) collected along the South China coast. After the quality control, assembly and taxonomy annotation of the sequencing data, we selected five genomic sequences which were identified as Microviridae for multi-dimensional analyses, such as host prediction, open reading frame and gene function prediction, phylogeny and three-dimensional structure prediction of major capsid proteins, evolutionary association between major capsid proteins and external scaffold proteins, as well as virus abundance analysis. The results show that the hosts of the five viruses were all Escherichia; one of the virus genome sequences was clustered in Bullavirinae branch, which indicates that it is a member of the subfamily; the other four genome sequences were not clustered into any known subfamilies so they should belong to a single unclassified subfamily; the relationship between the evolutionary tree of the main capsid proteins and external scaffold proteins indicates that the evolution rules of the two proteins were different.
[1] |
李辉尚, 李坚明, 秦小明, 等. 中国牡蛎产业发展现状、问题与对策:基于鲁、闽、粤、桂四省区的实证分析[J]. 海洋科学, 2017, 41(11): 125-129.
|
[2] |
李晨, 谢晓晨, 王博, 等. 牡蛎细菌病的研究进展[J]. 环境生态学, 2022, 4(4): 59-64.
|
[3] |
CHANG R Y, WONG J, MATHAI A, et al. Production of highly stable spray dried phage formulations for treatment of Pseudomonas aeruginosa lung infection[J]. Eur J Pharm Biopharm, 2017, 12(1): 1-13.
|
[4] |
赵虹泽. 噬菌体对鸡白痢治疗效果评价及其对盲肠菌群的影响[D]. 武汉: 华中农业大学, 2022: 1-10.
|
[5] |
DOSS J, CULBERTSON K, HAHN D, et al. A review of phage therapy against bacterial pathogens of aquatic and terrestrial organisms[J]. Viruses, 2017, 9(3): 50-60. doi: 10.3390/v9030050
|
[6] |
PEDULLA M L, FORD M E, HOUTZ J M, et al. Origins of highly mosaic mycobacteriophage genomes[J]. Cell, 2003, 113(2): 171-182. doi: 10.1016/S0092-8674(03)00233-2
|
[7] |
SALMOND G P, FINERAN P C. A century of the phage: past, present and future[J]. Nat Rev Microbiol, 2015, 13(12): 777-786. doi: 10.1038/nrmicro3564
|
[8] |
GILDEA L, AYARIGA J A, ROBERTSON B K. Bacteriophages as biocontrol agents in livestock food production[J]. Microorganisms, 2022, 10(11): 2126-2145. doi: 10.3390/microorganisms10112126
|
[9] |
DESNUES C, RODRIGUEZ-BRITO B, RAYHAWK S, et al. Biodiversity and biogeography of phages in modern stromatolites and thrombolites[J]. Nature, 2008, 452(7185): 340-343. doi: 10.1038/nature06735
|
[10] |
ROSARIO K, DAYARAM A, MARINOV M, et al. Diverse circular ssDNA viruses discovered in dragonflies (Odonata: Epiprocta)[J]. J Gen Virol, 2012, 93(Pt 12): 2668-2681.
|
[11] |
JIANG J Z, FANG Y F, WEI H Y, et al. A remarkably diverse and well-organized virus community in a filter-feeding oyster[J]. Microbiome, 2023, 11(1): 2-16. doi: 10.1186/s40168-022-01431-8
|
[12] |
BRENTLINGER K L, HAFENSTEIN S, NOVAK C R, et al. Microviridae, a family divided: isolation, characterization, and genome sequence of phiMH2K, a bacteriophage of the obligate intracellular parasitic bacterium Bdellovibrio bacteriovorus[J]. J Bacteriol, 2002, 184(4): 1089-1094. doi: 10.1128/jb.184.4.1089-1094.2002
|
[13] |
QUAISER A, DUFRESNE A, BALLAUD F, et al. Diversity and comparative genomics of Microviridae in Sphagnum-dominated peatlands[J]. Front Microbiol, 2015, 6: 375-385.
|
[14] |
ZHANG T, BREITBART M, LEE W H, et al. RNA viral community in human feces: prevalence of plant pathogenic viruses[J]. PLoS Biol, 2006, 4(1): 3-12.
|
[15] |
BREITBART M, HAYNES M, KELLEY S, et al. Viral diversity and dynamics in an infant gut[J]. Res Microbiol, 2008, 159(5): 367-373. doi: 10.1016/j.resmic.2008.04.006
|
[16] |
BENBOW R M, HUTCHISON C A, FABRICANT J D, et al. Genetic map of bacteriophage φX174[J]. J Virol, 1971, 7(5): 549-558. doi: 10.1128/jvi.7.5.549-558.1971
|
[17] |
CHEN S, ZHOU Y, CHEN Y, et al. Fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): i884-i890. doi: 10.1093/bioinformatics/bty560
|
[18] |
LI D, LIU C M, LUO R, et al. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph[J]. Bioinformatics, 2015, 31(10): 1674-1676. doi: 10.1093/bioinformatics/btv033
|
[19] |
BUCHFINK B, XIE C, HUSON D H. Fast and sensitive protein alignment using DIAMOND[J]. Nat Methods, 2015, 12(1): 59-60. doi: 10.1038/nmeth.3176
|
[20] |
HUSON D H, BEIER S, FLADE I, et al. MEGAN community edition-interactive exploration and analysis of large-scale microbiome sequencing data[J]. PLoS Comput Biol, 2016, 12(6): e1004957. doi: 10.1371/journal.pcbi.1004957
|
[21] |
HYATT D, CHEN G L, LOCASCIO P F, et al. Prodigal: prokaryotic gene recognition and translation initiation site identification[J]. BMC Bioinform, 2010, 11(1): 119-130. doi: 10.1186/1471-2105-11-119
|
[22] |
关迎晖, 向勇, 陈康. 基于Gephi的可视分析方法研究与应用[J]. 电信科学, 2013,2 9(S1): 112-119.
|
[23] |
KATOH K, STANDLEY D M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability[J]. Mol Biol Evol, 2013, 30(4): 772-780. doi: 10.1093/molbev/mst010
|
[24] |
CAPELLA-GUTIÉRREZ S, SILLA-MARTíNEZ J M, GABALDÓN T. TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses[J]. Bioinformatics, 2009, 25(15): 1972-1973. doi: 10.1093/bioinformatics/btp348
|
[25] |
NGUYEN L T, SCHMIDT H A, von HAESELER A, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies[J]. Mol Biol Evol, 2014, 32(1): 268-274.
|
[26] |
LEE I, OUK KIM Y, PARK S C, et al. OrthoANI: an improved algorithm and software for calculating average nucleotide identity[J]. Int J Syst Evol Microbiol, 2016, 66(2): 1100-1103. doi: 10.1099/ijsem.0.000760
|
[27] |
TISZA M J, BELFORD A K, DOMÍNGUEZ-HUERTA G, et al. Cenote-Taker 2 democratizes virus discovery and sequence annotation[J]. Virus Evol, 2021, 7(1): veaa100. doi: 10.1093/ve/veaa100
|
[28] |
SHANG J, SUN Y. CHERRY: a computational method for accurate prediction of virus-prokaryotic interactions using a graph encoder-decoder model[J]. Brief Bioinform, 2022, 23(5): 182-198. doi: 10.1093/bib/bbac182
|
[29] |
PATRO R, DUGGAL G, LOVE M I, et al. Salmon provides fast and bias-aware quantification of transcript expression[J]. Nat Methods, 2017, 14(4): 417-419. doi: 10.1038/nmeth.4197
|
[30] |
HOPKINS M, KAILASAN S, COHEN A, et al. Diversity of environmental single-stranded DNA phages revealed by PCR amplification of the partial major capsid protein[J]. Isme J, 2014, 8(10): 2093-2103. doi: 10.1038/ismej.2014.43
|
[31] |
李灏, 丁子元, 徐林通, 等. 论我国水产养殖病害控制技术现状与发展趋势[J]. 农业与技术, 2015, 35(24): 171.
|
[32] |
陈愿. 噬菌体在水产养殖业中的研究进展[J]. 水产学报, 2021, 45(9): 1605-1615.
|
[33] |
ROHWER F, THURBER R V. Viruses manipulate the marine environment[J]. Nature, 2009, 459(7244): 207-212. doi: 10.1038/nature08060
|
[34] |
ROUX S, ENAULT F, ROBIN A, et al. Assessing the diversity and specificity of two freshwater viral communities through metagenomics[J]. PLoS One, 2012, 7(3): e33641. doi: 10.1371/journal.pone.0033641
|
[35] |
KRUPOVIC M, FORTERRE P. Microviridae goes temperate: microvirus-related proviruses reside in the Genomes of Bacteroidetes[J]. PLoS One, 2011,6(5): e19893.
|
[36] |
李振, 张建城, 曹振辉, 等. 噬菌体控制主要水产养殖类致病菌的研究进展[J]. 畜牧与兽医, 2015, 47(8): 138-143.
|
[37] |
PENG Y, JIN Y, LIN H, et al. Application of the VPp1 bacteriophage combined with a coupled enzyme system in the rapid detection of Vibrio parahaemolyticus[J]. J Microbiol Methods, 2014, 98(3): 99-104.
|
[38] |
GAUDU P, YAMAMOTO Y, JENSEN P R, et al. Genetics of Lactococci[J]. Microbiol Spectr, 2019, 7(4): 361-362.
|
[39] |
洪宝华, 马荣荣, 袁娜. 养殖梭鱼格氏乳球菌的分离鉴定及致病性研究[J]. 农业生物技术学报, 2020, 28(8): 1458-1470.
|
[40] |
ZHU P, LIU G F, LIU C, et al. Novel RNA viruses in oysters revealed by virome[J]. iMeta, 2022, 1(4): e65.
|
1. |
姚紫荆,杨晓明,吴峰,田思泉. 基于参数最优地理探测器的南太平洋长鳍金枪鱼渔业资源分布驱动力研究. 海洋渔业. 2025(02): 153-162 .
![]() | |
2. |
张鸿霖,马有成,宋厚成,张健,曾志坚. 基于结构方程模型研究环境因子对毛里塔尼亚双拖鲣CPUE的影响. 中国水产科学. 2024(04): 465-475 .
![]() | |
3. |
王月,杨晓明,朱江峰. 中西太平洋自由群鲣资源丰度序列的振荡模态分析. 海洋渔业. 2024(03): 266-274 .
![]() | |
4. |
刘志强,郭绍健,王禹程,周成,吴峰,万荣. 中西太平洋金枪鱼延绳钓钓钩深度分布及其影响因素. 上海海洋大学学报. 2024(04): 1020-1030 .
![]() | |
5. |
范江涛,冯志萍,余为,马胜伟,陈新军. 南海鸢乌贼栖息地模型优化及季节性差异分析. 海洋湖沼通报(中英文). 2024(05): 111-120 .
![]() | |
6. |
杨诗玉,冯佶,李亚楠,朱江峰. 基于气候变化因子的印度洋长鳍金枪鱼资源评估. 南方水产科学. 2024(06): 84-94 .
![]() | |
7. |
何露雪,付东洋,李忠炉,王焕,孙琰,刘贝,余果. 南海西北部蓝圆鲹时空分布及其与环境因子的关系. 渔业科学进展. 2023(01): 24-34 .
![]() | |
8. |
王啸,刘文俊,张健. 基于ARIMA的海洋尼诺指数对中西太平洋黄鳍金枪鱼年际CPUE的影响. 南方水产科学. 2023(04): 10-20 .
![]() | |
9. |
郑好好,杨晓明,朱江峰. 基于多尺度地理加权回归模型的中西太平洋围网鲣渔获率环境影响机制研究. 南方水产科学. 2023(05): 1-10 .
![]() |