Citation: | LU Junyi, JIANG Liyan, LONG Kai, WANG Tao, WU Zhengli, LI Yanhong. HcTLR1 involved in antimicrobial immune response by MyD88-NF-κB signaling pathway in Hyriopsis cumingii[J]. South China Fisheries Science, 2024, 20(6): 19-30. DOI: 10.12131/20240093 |
Toll-like receptor (TLR) family is an evolutionarily conserved pathogen recognition receptor, playing an important role in detecting and defending against microbial pathogens. To study the role of HcTLR1 gene in the antimicrobial response of Hyriopsis cumingii, the full-length cDNA sequence of HcTLR1 gene was cloned using rapid-amplification of cDNA ends (RACE) technology; real-time fluorescence quantitative PCR analysis was employed to compare the expression levels of HcTLR1 gene in various tissues of H. cumingii challenged with different stimuli; double-stranded RNA interference technology was used to analyze the changes in MyD88-dependent pathway and related immune genes after the knockdown of the gene. The results show that the open reading frame (ORF) of HcTLR1 gene was 3 687 bp, encoding 1 228 amino acids. The predicted structure of HcTLR1 protein contained multiple Leucine-rich repeat domains, a transmembrane domain and an intracellular Toll/interleukin-1 receptor. Furthermore, the mRNA expression of HcTLR1 gene was highest in hemocytes and exhibited significant changes in response to Aeromonas veronii GL1 and pathogen-associated molecular patterns stimulation at different time points. Moreover, the knockdown of HcTLR1 gene significantly reduced the expression levels of genes in MyD88-related pathway, antibacterial peptides, lysozyme, defensins, lactoferrin, LPS1-binding protein/bactericidal permeability-increasing protein 2, and interleukin 17 stimulated by A. veronii GL1. In conclusion, it is suggested that HcTLR1 activates MyD88-dependent signaling pathways in H. cumingii during microbial infection and promotes resistance mechanisms in hemocytes.
[1] |
农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2024中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2024: 35.
|
[2] |
刘美玲, 上官宵兆, 王晓强, 等. 三角帆蚌MAP2K1基因的分子特征和表达[J]. 南方水产科学, 2022, 18(5): 91-99.
|
[3] |
刘旭博, 李柯, 周德勇, 等. 三角帆蚌对蓝藻的滤食作用及其对沉水植物生长的影响[J]. 水生态学杂志, 2011, 32(2): 17-24.
|
[4] |
高金平, 李家乐, 白志毅. 三角帆蚌外套膜有核珍珠质量与育珠蚌生长性状相关和通径分析[J]. 渔业科学进展, 2024, 45(5): 204-212.
|
[5] |
COATES C J, SODERHALL K. The stress-immunity axis in shellfish[J]. J Invertebr Pathol, 2021, 186: 107492. doi: 10.1016/j.jip.2020.107492
|
[6] |
YANG Q L, LI W Y, DU C Y, et al. Emerging pathogens caused disease and mortality in freshwater mussels, Hyriopsis cumingii, in China[J]. Aquac Res, 2020, 51(12): 5096-5105. doi: 10.1111/are.14848
|
[7] |
ZOU Y L, XU X, XIAO X T, et al. Genome-wide identification and characterization of Toll-like receptors (TLR) genes in Haliotis discus hannai, H. rufescens, and H. laevigata[J]. Fish Shellfish Immunol, 2023, 137: 108728. doi: 10.1016/j.fsi.2023.108728
|
[8] |
MAHAPATRA S, GANGULY B, PANI S, et al. A comprehensive review on the dynamic role of toll-like receptors (TLRs) in frontier aquaculture research and as a promising avenue for fish disease management[J]. Int J Biol Macromol, 2023, 253(Pt1): 126541.
|
[9] |
CAO Z, HENZEL W J, GAO X. IRAK: a kinase associated with the interleukin-1 receptor[J]. Science, 1996, 271(5252): 1128-1131. doi: 10.1126/science.271.5252.1128
|
[10] |
FERRAO R, ZHOU H, SHAN Y B, et al. IRAK4 dimerization and trans-autophosphorylation are induced by Myddosome assembly[J]. Mol Cell, 2014, 55(6): 891-903. doi: 10.1016/j.molcel.2014.08.006
|
[11] |
LOMAGA M A, YEH W C, SAROSI I, et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling[J]. Genes Dev, 1999, 13(8): 1015-1024. doi: 10.1101/gad.13.8.1015
|
[12] |
EMMERICH C H, ORDUREAU A, STRICKSON S, et al. Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains[J]. Proc Natl Acad Sci USA, 2013, 110(38): 15247-15252. doi: 10.1073/pnas.1314715110
|
[13] |
WANG C, DENG L, HONG M, et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK[J]. Nature, 2001, 412(6844): 346-351. doi: 10.1038/35085597
|
[14] |
REN Q, ZHONG X, YIN S W, et al. The first Toll receptor from the triangle-shell pearl mussel Hyriopsis cumingii[J]. Fish Shellfish Immunol, 2013, 34(5): 1287-1293. doi: 10.1016/j.fsi.2013.02.014
|
[15] |
REN Q, LAN J F, ZHONG X, et al. A novel Toll like receptor with two TIR domains (HcToll-2) is involved in regulation of antimicrobial peptide gene expression of Hyriopsis cumingii[J]. Dev Comp Immunol, 2014, 45(1): 198-208. doi: 10.1016/j.dci.2014.02.020
|
[16] |
ZHANG H W, HUANG Y, MAN X, et al. HcToll3 was involved in anti-Vibrio defense in freshwater pearl mussel, Hyriopsis cumingii[J]. Fish Shellfish Immunol, 2017, 63: 189-195. doi: 10.1016/j.fsi.2017.02.015
|
[17] |
HUANG Y, HAN K K, REN Q. Cloning and analysis of gene expression of two Toll receptors in freshwater pearl mussel Hyriopsis cumingii[J]. Front Physiol, 2018, 9: 133. doi: 10.3389/fphys.2018.00133
|
[18] |
HUANG Y, ZHANG G S, REN Q. Molecular characterization of two Toll receptors in Hyriopsis cumingii and their potential roles in antibacterial response[J]. Front Physiol, 2019, 10: 952. doi: 10.3389/fphys.2019.00952
|
[19] |
YIN S Y, C J, ZHU M X, et al. Characterization of a novel toll-like receptor and activation NF-κB signal pathway in triangle sail mussel Hyriopsis cumingii[J]. Comp Biochem Physio B, 2021, 255: 110608. doi: 10.1016/j.cbpb.2021.110608
|
[20] |
尹淑园. 三角帆蚌 Toll-样受体的鉴定及其免疫功能研究[D]. 南昌: 南昌大学, 2020: 57-58.
|
[21] |
YANG Q L, GUO K F, ZHOU X C, et al. Histopathology, antioxidant responses, transcriptome and gene expression analysis in triangle sail mussel Hyriopsis cumingii after bacterial infection[J]. Dev Comp Immunol, 2021, 124: 104175. doi: 10.1016/j.dci.2021.104175
|
[22] |
ZHU M X, SU F X, LENG J H, et al. Two NF-κB subunits are associated with antimicrobial immunity in Hyriopsis cumingii[J]. Dev Comp Immunol, 2022, 129: 104336. doi: 10.1016/j.dci.2021.104336
|
[23] |
杨清麟. 三角帆蚌高致病力菌株的分离鉴定及其对宿主免疫应答的影响[D]. 重庆: 西南大学, 2021: 15-60.
|
[24] |
BERGLUND N A, KARGAS V, ORTIZ-SUAREZ M L, et al. The role of protein-protein interactions in Toll-like receptor function[J]. Prog Biophys Mol Biol, 2015, 119(1): 72-83. doi: 10.1016/j.pbiomolbio.2015.06.021
|
[25] |
AKIRA S, UEMATSU S, TAKEUCHI O. Pathogen recognition and innate immunity[J]. Cell, 2006, 124: 783-801. doi: 10.1016/j.cell.2006.02.015
|
[26] |
KUMAR H, KAWAI T, AKIRA S. Toll-like receptors and innate immunity[J]. Biochem Biophys Res Commun, 2009, 388(4): 621-625. doi: 10.1016/j.bbrc.2009.08.062
|
[27] |
PARK B S, SONG D H, KIM H M, et al. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex[J]. Nature, 2009, 458(7242): 1191-1195. doi: 10.1038/nature07830
|
[28] |
ALEXOPOULOU L, HOLT A C, MEDZHITOV R, et al. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3[J]. Nature, 2001, 413(6857): 732-738. doi: 10.1038/35099560
|
[29] |
YU F F, CHEN J Y, LIN J J, et al. TLR4 involved in immune response against Vibrio parahaemolyticus by MyD88-dependent pathway in Crassostrea hongkongensis[J]. Fish Shellfish Immunol, 2023, 134: 108591. doi: 10.1016/j.fsi.2023.108591
|
[30] |
李素萍. 合浦珠母贝Toll样受体基因克隆与表达研究[D]. 钦州: 北部湾大学, 2022: 59-62.
|
[31] |
BAI L R, LI S P, WANG P, et al. Toll-like receptor may be involved in acquired immune response in pearl oyster Pinctada fucata[J]. Fish Shellfish Immunol, 2023, 141: 109091. doi: 10.1016/j.fsi.2023.109091
|
[32] |
SACO A, NOVOA B, GRECO S, et al. Bivalves present the largest and most diversified repertoire of Toll-like receptors in the animal kingdom, suggesting broad-spectrum pathogen recognition in marine waters[J]. Mol Biol Evol, 2023, 40(6): msad133. doi: 10.1093/molbev/msad133
|
[33] |
孙敬锋, 吴信忠. 贝类血细胞及其免疫功能研究进展[J]. 水生生物学报, 2006, 30(5): 601-607. doi: 10.3321/j.issn:1000-3207.2006.05.016
|
[34] |
FAN S Q, WANG W L, LI J L, et al. The truncated MyD88s negatively regulates TLR2 signal on expression of IL17-1 in oyster Crassostrea gigas[J]. Dev Comp Immunol, 2022, 133: 104446. doi: 10.1016/j.dci.2022.104446
|
[35] |
LIU J Y, WANG W L, KONG N, et al. A pattern recognition receptor CgTLR3 involves in regulating the proliferation of haemocytes in oyster Crassostrea gigas[J]. Dev Comp Immunol, 2023, 147: 104762. doi: 10.1016/j.dci.2023.104762
|
[36] |
QI P Z, WU Y S, GU Z Q, et al. A novel molluscan TLR molecule engaged in inflammatory response through MyD88 adapter recruitment[J]. Dev Comp Immunol, 2022, 131: 104373. doi: 10.1016/j.dci.2022.104373
|
[37] |
王信超, 孙敬敬, 范美华, 等. 厚壳贻贝血细胞颗粒的蛋白质组学分析[J]. 南方水产科学, 2012, 8(2): 7-14.
|
[38] |
刘静, 翟冰, 徐涛, 等. 菲律宾蛤仔血细胞吞噬作用的功能分析[J]. 海洋湖沼通报, 2024, 46(1): 90-97.
|
[39] |
WANG P, ZHANG Z Y, XU Z T, et al. A novel invertebrate toll-like receptor with broad recognition spectrum from thick shell mussel Mytilus coruscus[J]. Fish Shellfish Immunol, 2019, 89: 132-140. doi: 10.1016/j.fsi.2019.03.059
|
[40] |
REN Y P, DING D, PAN B P, et al. The TLR13-MyD88-NF-κB signalling pathway of Cyclina sinensis plays vital roles in innate immune responses[J]. Fish Shellfish Immunol, 2017, 70: 720-730. doi: 10.1016/j.fsi.2017.09.060
|
[41] |
FITZGERALD K A, KAGAN J C. Toll-like receptors and the control of immunity[J]. Cell, 2020, 180(6): 1044-1066. doi: 10.1016/j.cell.2020.02.041
|