Citation: | MA Wenyu, YANG Wei, QIN Xiaoming, CAO Wenhong, LIN Haisheng. Ameliorative effect of oyster enzymatic products on glucocorticoid-induced osteoporosis in rats[J]. South China Fisheries Science, 2025, 21(2): 182-190. DOI: 10.12131/20240223 |
Oyster has a variety of biological activities, and with the intensive research on the development of its activities, the great potential for the improvement of osteoporosis has been found. In this paper, the oyster enzymatic products (OP) were used to investigate their mitigating effects on glucocorticoid-type osteoporosis. A dexamethasone-induced glucocorticoids osteoporosis (GIOP) model was established, and different doses of OP were used to evaluate the mitigating effects of OP on the osteoporosis in rats in terms of serum biochemical indexes, Micro-CT, three-dimensional reconstruction, and histopathological sections. The results show that compared with the model group, the serum content of osteoprotegerin, Type I procollagen amino-terminal peptide and testosterone, which are the osteoclast markers, increased by an average of 13.67%, 11.51% and 17.80% in the low, medium and high dose groups, respectively (p<0.05); but the serum content of matrix metalloproteinases, histone K and anti-tartrate acid phosphatase, which are the osteoclast markers, decreased by 15.44%, 31.20% and 14.43%, respectively (p<0.05). The results of bone densitometry and histopathological analysis of Micro-CT and femur indicate that compared with those of the model group, the bone mineral density, the percentage of bone trabecular area and the area of bone salt deposition in the high-dose group increased by 56.31%, 18.59% and 22.51%, respectively (p<0.05). In conclusion, OP can accelerate the formation of new bone by increasing the ability of osteoblasts to synthesize collagen, decrease the rate of bone matrix degradation and bone metabolism, decrease the loss of bone mass, increase the level of sex hormones, increase the BMD, bone volume fraction, enhance the ability of bone to deposit bone calcium salts in rats, thus improve the symptoms of glucocorticoid-induced osteoporosis induced by dexamethasone.
[1] |
JULIET C. Glucocorticoid-induced osteoporosis: update[J]. Endocrine, 2018, 61(1): 7-16. doi: 10.1007/s12020-018-1588-2
|
[2] |
JHA S S. Correction: glucocorticoid-induced osteoporosis (GIOP)[J]. Ind J Orthop, 2024, 58(2): 222. doi: 10.1007/s43465-023-01078-z
|
[3] |
中华医学会骨质疏松和骨矿盐疾病分会. 中国骨质疏松症流行病学调查及“健康骨骼”专项行动结果发布[J]. 中华骨质疏松和骨矿盐疾病杂志, 2019, 12(4): 317-318. doi: 10.3969/j.issn.1674-2591.2019.04.001
|
[4] |
中华医学会物理医学与康复学分会. 骨质疏松症康复治疗指南 (2024版)[J]. 中国循证医学杂志, 2024, 24(6): 626-636.
|
[5] |
王佳佳, 张静琳. 糖皮质激素性高眼压小梁网病理改变及相关分子机制进展[J]. 国际眼科杂志, 2024, 24(7): 1088-1092. doi: 10.3980/j.issn.1672-5123.2024.7.15
|
[6] |
ZHANG L, LI J H, XIE R S, et al. Osteoporosis guidelines on TCM drug therapies: a systematic quality evaluation and content analysis[J]. Front Endocrinol, 2024, 14: 1276631. doi: 10.3389/fendo.2023.1276631
|
[7] |
ZHUO Y, LI M, JIANG Q Y, et al. Evolving roles of natural terpenoids from traditional chinese medicine in the treatment of osteoporosis[J]. Front Endocrinol, 2022, 13: 901545. doi: 10.3389/fendo.2022.901545
|
[8] |
DU J Z, WANG Y C, WU C L, et al. Targeting bone homeostasis regulation: potential of traditional Chinese medicine flavonoids in the treatment of osteoporosis[J]. Front Pharmacol, 2024, 15: 1361864. doi: 10.3389/fphar.2024.1361864
|
[9] |
GU Z X, ZHOU G H, ZHANG X Q, et al. Research progress of plant medicine and Chinese herbal compounds in the treatment of rheumatoid arthritis combined with osteoporosis[J]. Front Med, 2024, 10: 1288591. doi: 10.3389/fmed.2023.1288591
|
[10] |
胡子聪, 杨可君, 房翠兰. 南极磷虾油的营养特性及其改善骨质疏松症的研究进展[J]. 中国油脂, 2024, 49(4): 32-39.
|
[11] |
梅刚. 鲑鱼降钙素注射液对合并骨关节炎绝经后骨质疏松症患者疼痛、骨密度及膝关节功能的影响分析[J]. 中国处方药, 2021, 19(2): 93-94. doi: 10.3969/j.issn.1671-945X.2021.02.048
|
[12] |
马婷, 吴谦, 申铉日. 珍珠贝外套膜胶原蛋白肽及其锌螯合物的体外抑制骨质疏松作用[J]. 肉类研究, 2018, 32(2): 36-42, 9.
|
[13] |
逯冠宏. 牡蛎多肽提取工艺的建立及其对RAW264.7巨噬细胞免疫调节作用的研究[D]. 长春: 吉林大学, 2021: 47-60.
|
[14] |
钟凯翠, 邹雯清, 陈忠琴, 等. 海红米花色苷-牡蛎肽新型复合饮料制备工艺及降血糖作用研究[J/OL]. 食品与发酵工业, 1-13. https://doi.org/10.13995/j.cnki.11-1802/ts.039921.
|
[15] |
蔡雯雯, 葛小东, 李娜, 等. 牡蛎蛋白酶解物对小鼠慢性酒精性肝损伤的保护作用[J]. 食品科学, 2022, 43(17): 147-155. doi: 10.7506/spkx1002-6630-20210720-228
|
[16] |
谭强来, 陆馨敏, 吴兰兰, 等. 牡蛎多糖缓解体力疲劳及其对力竭小鼠肠道菌群的影响[J]. 中国微生态学杂志, 2024, 36(4): 390-400.
|
[17] |
黄倩倩, 吴海英, 秦小明. 牡蛎肽对帕罗西汀致雄性小鼠性功能障碍的作用效果及潜在机制[J]. 南方水产科学, 2024, 20(1): 161-172. doi: 10.12131/20230153
|
[18] |
HU Y Y, HOU Z X, LIU Z Q, et al. Oyster mantle-derived exosomes alleviate osteoporosis by regulating bone homeostasis[J]. Biomaterials, 2024, 311: 122648.
|
[19] |
IHN H J, KIM J A, LIM S, et al. Fermented oyster extract prevents ovariectomy-induced bone loss and suppresses Osteoclastogenesis[J]. Nutrients, 2019, 11(6): 1392. doi: 10.3390/nu11061392
|
[20] |
MOLAGODA I M N, ATHAPATHTHU A M G K, PARK E K, et al. Fermented oyster (Crassostrea gigas) extract cures and prevents prednisolone-induced bone resorption by activating osteoblast differentiation[J]. Foods, 2022, 11(5): 678. doi: 10.3390/foods11050678
|
[21] |
CHEN H, SHI P J, XU Z, et al. Oral administration of oyster peptide prevents bone loss in ovariectomized mice[J]. eFood, 2020, 1(4): 298-309. doi: 10.2991/efood.k.200812.001
|
[22] |
JEONG J W, CHOI S H, HAN M H, et al. Protective effects of fermented oyster extract against RANKL-induced Osteoclastogenesis through scavenging ROS generation in RAW 264.7 cells[J]. Int J Mol Sci, 2019, 20(6): 1439. doi: 10.3390/ijms20061439
|
[23] |
ASHA K K, KUMARI K R R, KUMAR K A, et al. Sequence determination of an antioxidant peptide obtained by enzymatic hydrolysis of oyster Crassostrea madrasensis (Preston)[J]. Int J Pept Res Ther, 2016, 22: 421-433. doi: 10.1007/s10989-016-9521-0
|
[24] |
程亚军, 陈绍丰, 李明, 等. 骨转换标志物在绝经后骨质疏松症中的临床应用[J]. 海军军医大学学报, 2022, 43(2): 182-187.
|
[25] |
《中国骨质疏松杂志》骨代谢专家组. 骨代谢生化指标实验规范 (2024)[J]. 中国骨质疏松杂志, 2024, 30(8): 1093-1101. doi: 10.3969/j.issn.1006-7108.2024.08.001
|
[26] |
冯佳, 向阳, 夏燕, 等. 三种大鼠骨质疏松模型的比较研究[J]. 实验动物与比较医学, 2015, 35(1): 52-55. doi: 10.3969/j.issn.1674-5817.2015.01.011
|
[27] |
da COSTA N D S D, LIMA S L, GALICIOLLI M E A, et al. Drug-induced osteoporosis and mechanisms of bone tissue regeneration through trace elements[J]. J Trace Elem Med Biol, 2024, 84: 127446. doi: 10.1016/j.jtemb.2024.127446
|
[28] |
BACHMANN S, DUNMORE C J, SKINNER M M, et al. A computational framework for canonical holistic morphometric analysis of trabecular bone[J]. Sci Rep, 2022, 12(1): 5187. doi: 10.1038/s41598-022-09063-6
|
[29] |
MÜLLER R. Hierarchicl microimaging of bone structure and function[J]. Nat Rev Rheumatol, 2009, 5(7): 373-381. doi: 10.1038/nrrheum.2009.107
|
[30] |
苏开鑫, 谢华, 王宏芬, 等. 牡蛎肉提取物对类固醇性骨质疏松大鼠骨代谢的影响[J]. 中国自然医学杂志, 2009, 11(2): 97-99.
|
[31] |
WAWRZYNIAK A, BALAWENDER K. Structural and metabolic changes in bone[J]. Animals, 2022, 12(15): 1946. doi: 10.3390/ani12151946
|
[32] |
ZIMMERMANN E A, RIEDEL C, SCHMIDT F N, et al. Mechanical competence and bone quality develop during skeletal growth[J]. J Bone Miner Res, 2019, 34(8): 1461-1472.
|
[33] |
CIOSEK Ż, KOT K, KOSIK-BOGACKA D, et al. The effects of calcium, magnesium, phosphorus, fluoride, and lead on bone tissue[J]. Biomolecules, 2021, 11(4): 506.
|
[1] | LIU Chenyuan, SHANG Yukun, MAO Huili, LI Saibo, WANG Qiankun, ZHANG Xingxing, ZHU Lixing, ZHANG Ziyi, SHEN Changchun, GUAN Jianyi. Isolation and identification of a pathogenic Nocardia seriolae strain XXLX2 from seabass and comparative genomic analysis[J]. South China Fisheries Science. DOI: 10.12131/20240254 |
[2] | YANG Yu, ZHENG Wenwen, YU Wenbing, XU Yingjie, ZHANG Xing, SONG Xuehong, QIN Fenju. Study on bacteriostatic activity of nanocerium dioxide against two aquatic pathogenic Vibrio spp.[J]. South China Fisheries Science, 2024, 20(4): 144-153. DOI: 10.12131/20240046 |
[3] | SU Wenxiao, DENG Yiqin, ZANG Shujun, WANG Qian, LIN Ziyang, FENG Juan. Effects of cbpD gene on virulence and related biological characteristics of Vibrio alginolyticus[J]. South China Fisheries Science, 2022, 18(5): 81-90. DOI: 10.12131/20220025 |
[4] | Yuting WANG, Rongxiang ZHOU, Jihong LI, Yao ZHANG, Tingting ZHOU, Wencai CHEN, Yun PENG, Manli TANG, Guizhen MA, Jianhe XU. Isolation and identification of vibrio resistant photosynthetic bacteria and degradation of nitrite nitrogen and ammonia nitrogen[J]. South China Fisheries Science, 2021, 17(5): 26-33. DOI: 10.12131/20210016 |
[5] | WANG Yang, ZHAO Jing, WANG Jingru, LUO Yunlong, LIU Ying, BAI Dongqing, SHAO Peng, LI Yuhan. Inhibitory activity of home-made garbage enzyme against aquatic pathogens and isolation and identification of its fermentation strains[J]. South China Fisheries Science, 2020, 16(6): 97-104. DOI: 10.12131/20200101 |
[6] | YU Lujun, MIAO Zongyu, CAI Lei, WEI Yuanzheng, HUANG Ren, LI Jianjun. Pathogenicity and impact factors of pathogen causing ulcer disease on Mugilogobius chulae[J]. South China Fisheries Science, 2018, 14(5): 45-52. DOI: 10.3969/j.issn.2095-0780.2018.05.006 |
[7] | GU Liangbin, XU Liwen, FENG Juan, SU YouLu, LIU Guangfeng, GUO Zhixun. Identification and drug sensitive test of bacterial Pathogens from Plectropomus leopardus with tail fester disease[J]. South China Fisheries Science, 2015, 11(4): 71-80. DOI: 10.3969/j.issn.2095-0780.2015.04.011 |
[8] | YANG Qiuhua, GE Hui, FANG Lüping, LIN Qi, HE Libin, ZHOU Chen. Identification of Vibrio tubiashii isolated from diseased pond-cultured sea cucumbers (Apostichopus japonicus)[J]. South China Fisheries Science, 2014, 10(4): 45-51. DOI: 10.3969/j.issn.2095-0780.2014.04.008 |
[9] | WANG Ruixuan, GENG Yujing, FENG Juan, WANG Jiangyong. Identification and analysis of resistant plasmid of pathogenic bacteria Vibrio harveyi isolated from Haliotis diversicolor[J]. South China Fisheries Science, 2012, 8(2): 1-6. DOI: 10.3969/j.issn.2095-0780.2012.02.001 |
[10] | WANG Jiangyong, SUN Xiuxiu, WANG Ruixuan, SU Youlu. Isolation, identification and phylogenetic analysis of pathogen from Haliotis diversicolor Reeve with withering syndrome[J]. South China Fisheries Science, 2010, 6(5): 21-26. DOI: 10.3969/j.issn.1673-2227.2010.05.004 |