CHEN Zhizhao, ZHU Tao, LEI Caixia, JIANG Peng, DU Jinxing, ZHU Junjie, SONG Hongmei, LI Shengjie. Effects on growth and hepatic glucose metabolism of grass carp fed with high dietary carbohydrates[J]. South China Fisheries Science, 2023, 19(5): 75-85. DOI: 10.12131/20230020
Citation: CHEN Zhizhao, ZHU Tao, LEI Caixia, JIANG Peng, DU Jinxing, ZHU Junjie, SONG Hongmei, LI Shengjie. Effects on growth and hepatic glucose metabolism of grass carp fed with high dietary carbohydrates[J]. South China Fisheries Science, 2023, 19(5): 75-85. DOI: 10.12131/20230020

Effects on growth and hepatic glucose metabolism of grass carp fed with high dietary carbohydrates

More Information
  • Received Date: February 14, 2023
  • Revised Date: May 18, 2023
  • Accepted Date: May 24, 2023
  • Available Online: June 20, 2023
  • In order to explore the growth performance, organic health and nutritional metabolism level of Ctenopharyngodon idella, a fed herbivorous fish-grass carp, with high dietary carbohydrates, we divided 1 800 individuals of (132.01±16.43) g into normal carbohydrate diet group (Control group) and high carbohydrate diet group (Group H), feeding them with 15% and 45% level carbohydrate diets for 140 d. Each group included three replications and each replication included 300 individuals. The results show that compared with the control group, the body mass of Group H was higher significantly on 60th, 80th and 140th day (P<0.05). The visceral body ratio, mesenteric fat coefficient, villus height and hepatic glycogen content of Group H increased significantly on 140th day, and damage was observed in liver and intestinal tract. The expression of glucose kinase gene (gk), pyruvate kinase gene (pk), glycogen synthase 2 gene (gys2) and fatty acid synthetase gene (fas) showed a decreasing trend in Group H along with time, while phosphoenolpyruvate carboxykinase gene (pepck) and glucose-6-phosphatase gene (g6pase) showed an increasing trend. The expressions of gys2, fas, pepck and g6pase had the same trend in Group L as that in Group H, while no significant variation trend was observed in gk and pk gene at each time. Compared with the control group, the expression of pk was significantly lower, while those of g6pase, pepck and fas were significantly higher in Group H. In conclusion, 40% level dietary carbohydrate can improve the weight gain rate of grass carp, but high dietary carbohydrates have a negative impact on physiological indicators and significantly affect glucose metabolism at molecular level.

  • [1]
    草鱼产业发展报告[J]. 中国水产, 2021(2): 27-37.
    [2]
    WILSON R P. Utilization of dietary carbohydrate by fish[J]. Aquaculture, 1994, 124(1): 67-80.
    [3]
    许霄霄, 刘伟, 文华, 等. 高糖饲料对吉富罗非鱼生长性能、饲料利用和糖脂代谢的影响[J]. 南方水产科学, 2017, 13(5): 94-102. doi: 10.3969/j.issn.2095-0780.2017.05.013
    [4]
    齐野, 孙向军, 于刚, 等. 饲料可消化糖水平对宝石鲈餐后代谢的影响[J]. 南方水产, 2010, 6(2): 59-65.
    [5]
    PAN M Z, LIU D N, LIU J M, et al. Biotin alleviates hepatic and intestinal inflammation and apoptosis induced by high dietary carbohydrate in juvenile turbot (Scophthalmus maximus L.)[J]. Fish Shellfish Immunol, 2022, 130(8): 560-571.
    [6]
    陈少莲, 刘肖芳. 我国淡水优质草食性鱼类的营养和能量学研究: 草鱼、团头鲂对七种水生高等植物的最大摄食量和消化率的测定[J]. 水生生物学报, 1993, 17(1): 1-12.
    [7]
    张蕾, 章文琪, 吴仁福, 等. 中华绒螯蟹成蟹养殖池塘常用水草的营养成分比较[J]. 浙江海洋学院学报(自然科学版), 2016, 35(2): 113-121.
    [8]
    TIAN L X, LIU Y J, YANG H J, et al. Effects of different dietary wheat starch levels on growth, feed efficiency and digestibility in grass carp (Ctenopharyngodon idella)[J]. Aquac Int, 2012, 20(2): 283-293. doi: 10.1007/s10499-011-9456-6
    [9]
    SU J Z, MEI L Y, XI L W, et al. Responses of glycolysis, glycogen accumulation and glucose-induced lipogenesis in grass carp and Chinese longsnout catfish fed high-carbohydrate diet[J]. Aquaculture, 2021, 533: 736146. doi: 10.1016/j.aquaculture.2020.736146
    [10]
    CAI W J, LIANG X F, YUAN X C, et al. Different strategies of grass carp (Ctenopharyngodon idella) responding to insufficient or excessive dietary carbohydrate[J]. Aquaculture, 2018, 497: 292-298. doi: 10.1016/j.aquaculture.2018.07.042
    [11]
    LI X S, ZHU X M, HAN D, et al. Carbohydrate utilization by herbivorous and omnivorous freshwater fish species: a comparative study on gibel carp (Carassius auratus gibelio. var CAS III) and grass carp (Ctenopharyngodon idellus)[J]. Aquac Res, 2016, 47(1): 128-139. doi: 10.1111/are.12476
    [12]
    曹俊明, 关国强, 刘永坚, 等. 饲料蛋白质、脂肪、碳水化合物水平对草鱼生长和组织营养成分组成的影响[J]. 水产科技情报, 1997(2): 8-12. doi: 10.16446/j.cnki.1001-1994.1997.02.002
    [13]
    YUAN X C, LIANG X F, LI A X, et al. The feedback regulation of carbohydrates intake on food intake and appetite in grass carp (Ctenopharyngodon idella)[J]. Fish Physiol Biochem, 2021, 47(5): 1395-1403. doi: 10.1007/s10695-020-00914-5
    [14]
    樊佳佳, 唐小红, 白俊杰, 等. 草鱼PKMa基因SNPs筛选及与耐糖性状的关联分析[J]. 农业生物技术学报, 2019, 27(6): 1072-1080.
    [15]
    孙雪. 草鱼生长相关SNPs标记的筛选及优势基因型的聚合效果分析[D]. 上海: 上海海洋大学, 2020: 15.
    [16]
    MARANDEL L, SEILIEZ I, VERON V, et al. New insights into the nutritional regulation of gluconeogenesis in carnivorous rainbow trout (Oncorhynchus mykiss): a gene duplication trail[J]. Physiol Genomics, 2015, 47(7): 253-263. doi: 10.1152/physiolgenomics.00026.2015
    [17]
    BOONANUNTANASARN S, KUMKHONG S, YOOHAT K, et al. Molecular responses of Nile tilapia (Oreochromis niloticus) to different levels of dietary carbohydrates[J]. Aquaculture, 2018, 482: 117-123. doi: 10.1016/j.aquaculture.2017.09.032
    [18]
    陈团, 胡毅, 张德洪, 等. 不同糖源膨化饲料对大规格草鱼生长、越冬及血清部分生化指标的影响[J]. 水产学报, 2019, 43(4): 1069-1079.
    [19]
    FANG L, GUO X, LIANG X F. First feeding of grass carp (Ctenopharyngodon idellus) with a high-carbohydrate diet: the effect on glucose metabolism in juveniles[J]. Aquac Rep, 2021, 21: 100830. doi: 10.1016/j.aqrep.2021.100830
    [20]
    LI A X, YUAN X C, LIANG X F, et al. Adaptations of lipid metabolism and food intake in response to low and high fat diets in juvenile grass carp (Ctenopharyngodon idellus)[J]. Aquaculture, 2016, 457: 43-49. doi: 10.1016/j.aquaculture.2016.01.014
    [21]
    GONG L, HE H C, LI D J, et al. A new isolate of Pediococcus pentosaceus (SL001) with antibacterial activity against fish pathogens and potency in facilitating the immunity and growth performance of grass carps[J]. Front Microbiol, 2019, 10: 1384. doi: 10.3389/fmicb.2019.01384
    [22]
    GAO W, LIU Y J, TIAN L X, et al. Effect of dietary carbohydrate-to-lipid ratios on growth performance, body composition, nutrient utilization and hepatic enzymes activities of herbivorous grass carp (Ctenopharyngodon idella)[J]. Aquac Nutr, 2010, 16(3): 327-333.
    [23]
    胡毅, 陈云飞, 张德洪, 等. 不同碳水化合物和蛋白质水平膨化饲料对大规格草鱼生长、肠道消化酶及血清指标的影响[J]. 水产学报, 2018, 42(5): 777-786.
    [24]
    SONG X R, LIU H K, HAN D, et al. Two strains of gibel carp (Carassius gibelio) exhibit diverse responses to carbohydrates in a low-lipid diet[J]. Aquac Nutr, 2022, 2022: 9417331. DOI: 10.1155/2022/9417331.
    [25]
    SONG X R, MARANDEL L, SKIBA-CASSY S, et al. Regulation by dietary carbohydrates of intermediary metabolism in liver and muscle of two isogenic lines of rainbow trout[J]. Front Physiol, 2018, 9: 1579. doi: 10.3389/fphys.2018.01579
    [26]
    YUAN X C, ZHOU Y, LIANG X F, et al. Molecular cloning, expression and activity of pyruvate kinase in grass carp Ctenopharyngodon idella: Effects of dietary carbohydrate level[J]. Aquaculture, 2013, 410/411: 32-40. doi: 10.1016/j.aquaculture.2013.06.009
    [27]
    WANG J T, LI X Y, HAN T, et al. Effects of different dietary carbohydrate levels on growth, feed utilization and body composition of juvenile grouper Epinephelus akaara[J]. Aquaculture, 2016, 459: 143-147. doi: 10.1016/j.aquaculture.2016.03.034
    [28]
    LI X F, LIU W B, LU K L, et al. Dietary carbohydrate/lipid ratios affect stress, oxidative status and non-specific immune responses of fingerling blunt snout bream, Megalobrama amblycephala[J]. Fish Shellfish Immunol, 2012, 33(2): 316-323. doi: 10.1016/j.fsi.2012.05.007
    [29]
    ABIMORAD E G, CARNEIRO D J, URBINATI E C. Growth and metabolism of pacu (Piaractus mesopotamicus Holmberg 1887) juveniles fed diets containing different protein, lipid and carbohydrate levels[J]. Aquac Res, 2007, 38(1): 36-44. doi: 10.1111/j.1365-2109.2006.01621.x
    [30]
    VASQUEZ-TORRES W, ARIAS-CASTELLANOS J A. Effect of dietary carbohydrates and lipids on growth in cachama (Piaractus brachypomus)[J]. Aquac Res, 2013, 44(11): 1768-1776.
    [31]
    YE W J, TAN X Y, CHEN Y D, et al. Effects of dietary protein to carbohydrate ratios on growth and body composition of juvenile yellow catfish, Pelteobagrus fulvidraco (Siluriformes, Bagridae, Pelteobagrus)[J]. Aquac Res, 2009, 40(12): 1410-1418. doi: 10.1111/j.1365-2109.2009.02239.x
    [32]
    TIAN J, WU F, YU L J, et al. The effects of high-macronutrient (protein, fat and carbohydrate) diets on growth performance and muscular metabolic responses in grass carp[J]. Aquac Nutr, 2020, 26(6): 2135-2146. doi: 10.1111/anu.13152
    [33]
    WANG J L, LU R H, SUN J J, et al. Differential expression of lipid metabolism-related genes and miRNAs in Ctenopharyngodon idella liver in relation to fatty liver induced by high non-protein energy diets[J]. Aquac Nutr, 2017, 48(8): 4070-4085.
    [34]
    付兵, 郁二蒙, 王广军, 等. 投喂蚕豆对草鱼肝脏脂肪蓄积及脂肪代谢的影响[J]. 上海海洋大学学报, 2020, 29(1): 45-54. doi: 10.12024/jsou.20190302546
    [35]
    CAHU C L, GISBERT E, VILLENEUVE L, et al. Influence of dietary phospholipids on early ontogenesis of fish[J]. Aquac Res, 2009, 40(9): 989-999. doi: 10.1111/j.1365-2109.2009.02190.x
    [36]
    LI X F, XU C, ZHANG D D, et al. Molecular characterization and expression analysis of glucokinase from herbivorous fish Megalobrama amblycephala subjected to a glucose load after the adaption to dietary carbohydrate levels[J]. Aquaculture, 2016, 459: 89-98. doi: 10.1016/j.aquaculture.2016.03.035
    [37]
    SONG X R, MARANDEL L, DUPONT-NIVET M, et al. Hepatic glucose metabolic responses to digestible dietary carbohydrates in two isogenic lines of rainbow trout[J]. Biol Open, 2018, 7(6): bio032896.
    [38]
    徐晶, 梁旭方, 蔡文静, 等. 草鱼3个6-磷酸葡萄糖酶催化亚基的基因表达分析及高糖饲料对其表达的影响[J]. 中国水产科学, 2020, 27(1): 24-34.
    [39]
    QIANG J, YANG H, HE J, et al. Comparative study of the effects of two high-carbohydrate diets on growth and hepatic carbohydrate metabolic enzyme responses in juvenile GIFT tilapia (Oreochromis niloticus)[J]. Turkish J Fish Aquat, 2014, 14(2): 515-525.
    [40]
    SHI H J, LIU W B, XU C, et al. Transcriptional regulation of the AMP-activated protein kinase and glycolipid metabolism-related genes by insulin and glucagon in blunt snout bream (Megalobrama amblycephala): a comparative study[J]. Aquaculture, 2020, 515: 734553. doi: 10.1016/j.aquaculture.2019.734553
  • Related Articles

    [1]WU Fan, LI Yunfeng, MA Baoshan, ZHANG Yan, RU Huijun, SHEN Ziwei, WEI Nian. Fish community structure and environmental impact factors in Three Gorges Reservoir during summer and autumn[J]. South China Fisheries Science. DOI: 10.12131/20240199
    [2]TONG Fei, FENG Xue, YUAN Huarong, CHEN Yuxiang, SHU Liming, LIU Yan, CHEN Pimao. Study on disturbance of oyster culture on environmental factors and bacterioplankton in Dapeng Cove[J]. South China Fisheries Science, 2024, 20(5): 32-41. DOI: 10.12131/20240138
    [3]MA Youcheng, ZHU Guoping, ZHANG Jian, WANG Xiao, ZHANG Honglin, SHI Jiangao. Influence of environmental factors on CPUE of three different fishing methods in skipjack tuna fisheries[J]. South China Fisheries Science, 2023, 19(6): 11-20. DOI: 10.12131/20230102
    [4]GONG Yuyan, XIAO Yayuan, XU Shannan, LIU Yong, YANG Yutao, HUANG Zirong, LI Chunhou. Zooplankton community structure in Hailing Bay and its relationship with primary environmental factors[J]. South China Fisheries Science, 2019, 15(6): 49-55. DOI: 10.12131/20180220
    [5]YANG Baoli, WANG Ruixuan, SHI Shaokun, WANG Jiangyong. Density variation of Vibrio in ablone aquaculture water and its relationship with environmental factors[J]. South China Fisheries Science, 2015, 11(3): 95-102. DOI: 10.3969/j.issn.2095-0780.2015.03.015
    [6]SHEN Yonglong, HUANG Jintian, GE Xianping, WANG Aimin, LV Fu, SHEN Nannan, CAI Wancun. Effects of several key environmental factors on survival of artificial breeding of Onchidium struma[J]. South China Fisheries Science, 2012, 8(6): 57-64. DOI: 10.3969/j.issn.2095-0780.2012.06.009
    [7]CAO Yucheng, LI Zhuojia, YANG Yingying, WEN Guoliang, HUANG Honghui. Effects of Bacillus licheniformis strain De on growth of Sparus latus and main environmental factors in aquaculture pond[J]. South China Fisheries Science, 2010, 6(3): 1-6. DOI: 10.3969/j.issn.1673-2227.2010.03.001
    [8]ZHOU Haiping, LI Zhuojia, YANG Yingying, CHEN Yongqing. Effects of environmental factors on the growth of Lactobacillus spp[J]. South China Fisheries Science, 2006, 2(4): 65-67.
    [9]GUO Genxi. The existing problem and basic countermeasure in the industrialization development of deep-water net cage culture in China[J]. South China Fisheries Science, 2006, 2(1): 66-70.
    [10]JIANG Zeng-jie, FANG Jian-guang. Effects of fouling organisms on shellfish cultivation and its prevention[J]. South China Fisheries Science, 2005, 1(3): 65-68.
  • Cited by

    Periodical cited type(8)

    1. 王旭蕾,高进,齐鑫,王永波,陈傅晓,刘金叶,符书源. 5种石斑鱼全基因组微卫星筛选与特征分析. 渔业科学进展. 2024(03): 149-158 .
    2. 崔同心,刘海洋,张晋,欧密,罗青,费树站,陈昆慈,赵建. 基于单核苷酸多态性标记的7个斑鳢野生群体的遗传结构和遗传多样性分析. 中国水产科学. 2024(07): 829-838 .
    3. 马骞,吴雨薇,王刘永,赵晓龙,周启苓,陈刚,黄建盛. 军曹鱼全基因组微卫星特征分析与多态性标记的筛选及应用. 渔业科学进展. 2023(04): 135-144 .
    4. 范士琦,冯婧昀,苗晓敏,郭慧,陶怡曦,李云. 重庆养殖场鳜群体微卫星遗传多样性研究. 水产养殖. 2023(07): 18-23 .
    5. 杨尉,司圆圆,许瑞雯,陈兴汉. 基于基因组survey数据的疣吻沙蚕微卫星特征分析及多态标记开发. 南方水产科学. 2023(05): 123-133 . 本站查看
    6. 彭冶,李杰,王涛,张凯,宁先会,暨杰,尹绍武. 瓦氏黄颡鱼全基因组微卫星的分布特征及其定位的初步研究. 南方水产科学. 2022(01): 90-98 . 本站查看
    7. 田镇,陈爱华,吴杨平,陈素华,张雨,曹奕,张志东,李秋洁. 文蛤转录组中微卫星位点生物信息分析. 海洋渔业. 2021(02): 160-167 .
    8. 梁霞,王慧琪,马宇璇,宋磊,吴超,李亮徽,张国松. 鲤鱼(Cyprinus carpio)全基因组微卫星分布特征研究. 南京师大学报(自然科学版). 2021(03): 103-111 .

    Other cited types(4)

Catalog

    Article views (423) PDF downloads (70) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return