Citation: | CHEN Zhizhao, ZHU Tao, LEI Caixia, JIANG Peng, DU Jinxing, ZHU Junjie, SONG Hongmei, LI Shengjie. Effects on growth and hepatic glucose metabolism of grass carp fed with high dietary carbohydrates[J]. South China Fisheries Science, 2023, 19(5): 75-85. DOI: 10.12131/20230020 |
In order to explore the growth performance, organic health and nutritional metabolism level of Ctenopharyngodon idella, a fed herbivorous fish-grass carp, with high dietary carbohydrates, we divided 1 800 individuals of (132.01±16.43) g into normal carbohydrate diet group (Control group) and high carbohydrate diet group (Group H), feeding them with 15% and 45% level carbohydrate diets for 140 d. Each group included three replications and each replication included 300 individuals. The results show that compared with the control group, the body mass of Group H was higher significantly on 60th, 80th and 140th day (P<0.05). The visceral body ratio, mesenteric fat coefficient, villus height and hepatic glycogen content of Group H increased significantly on 140th day, and damage was observed in liver and intestinal tract. The expression of glucose kinase gene (gk), pyruvate kinase gene (pk), glycogen synthase 2 gene (gys2) and fatty acid synthetase gene (fas) showed a decreasing trend in Group H along with time, while phosphoenolpyruvate carboxykinase gene (pepck) and glucose-6-phosphatase gene (g6pase) showed an increasing trend. The expressions of gys2, fas, pepck and g6pase had the same trend in Group L as that in Group H, while no significant variation trend was observed in gk and pk gene at each time. Compared with the control group, the expression of pk was significantly lower, while those of g6pase, pepck and fas were significantly higher in Group H. In conclusion, 40% level dietary carbohydrate can improve the weight gain rate of grass carp, but high dietary carbohydrates have a negative impact on physiological indicators and significantly affect glucose metabolism at molecular level.
[1] |
草鱼产业发展报告[J]. 中国水产, 2021(2): 27-37.
|
[2] |
WILSON R P. Utilization of dietary carbohydrate by fish[J]. Aquaculture, 1994, 124(1): 67-80.
|
[3] |
许霄霄, 刘伟, 文华, 等. 高糖饲料对吉富罗非鱼生长性能、饲料利用和糖脂代谢的影响[J]. 南方水产科学, 2017, 13(5): 94-102. doi: 10.3969/j.issn.2095-0780.2017.05.013
|
[4] |
齐野, 孙向军, 于刚, 等. 饲料可消化糖水平对宝石鲈餐后代谢的影响[J]. 南方水产, 2010, 6(2): 59-65.
|
[5] |
PAN M Z, LIU D N, LIU J M, et al. Biotin alleviates hepatic and intestinal inflammation and apoptosis induced by high dietary carbohydrate in juvenile turbot (Scophthalmus maximus L.)[J]. Fish Shellfish Immunol, 2022, 130(8): 560-571.
|
[6] |
陈少莲, 刘肖芳. 我国淡水优质草食性鱼类的营养和能量学研究: 草鱼、团头鲂对七种水生高等植物的最大摄食量和消化率的测定[J]. 水生生物学报, 1993, 17(1): 1-12.
|
[7] |
张蕾, 章文琪, 吴仁福, 等. 中华绒螯蟹成蟹养殖池塘常用水草的营养成分比较[J]. 浙江海洋学院学报(自然科学版), 2016, 35(2): 113-121.
|
[8] |
TIAN L X, LIU Y J, YANG H J, et al. Effects of different dietary wheat starch levels on growth, feed efficiency and digestibility in grass carp (Ctenopharyngodon idella)[J]. Aquac Int, 2012, 20(2): 283-293. doi: 10.1007/s10499-011-9456-6
|
[9] |
SU J Z, MEI L Y, XI L W, et al. Responses of glycolysis, glycogen accumulation and glucose-induced lipogenesis in grass carp and Chinese longsnout catfish fed high-carbohydrate diet[J]. Aquaculture, 2021, 533: 736146. doi: 10.1016/j.aquaculture.2020.736146
|
[10] |
CAI W J, LIANG X F, YUAN X C, et al. Different strategies of grass carp (Ctenopharyngodon idella) responding to insufficient or excessive dietary carbohydrate[J]. Aquaculture, 2018, 497: 292-298. doi: 10.1016/j.aquaculture.2018.07.042
|
[11] |
LI X S, ZHU X M, HAN D, et al. Carbohydrate utilization by herbivorous and omnivorous freshwater fish species: a comparative study on gibel carp (Carassius auratus gibelio. var CAS III) and grass carp (Ctenopharyngodon idellus)[J]. Aquac Res, 2016, 47(1): 128-139. doi: 10.1111/are.12476
|
[12] |
曹俊明, 关国强, 刘永坚, 等. 饲料蛋白质、脂肪、碳水化合物水平对草鱼生长和组织营养成分组成的影响[J]. 水产科技情报, 1997(2): 8-12. doi: 10.16446/j.cnki.1001-1994.1997.02.002
|
[13] |
YUAN X C, LIANG X F, LI A X, et al. The feedback regulation of carbohydrates intake on food intake and appetite in grass carp (Ctenopharyngodon idella)[J]. Fish Physiol Biochem, 2021, 47(5): 1395-1403. doi: 10.1007/s10695-020-00914-5
|
[14] |
樊佳佳, 唐小红, 白俊杰, 等. 草鱼PKMa基因SNPs筛选及与耐糖性状的关联分析[J]. 农业生物技术学报, 2019, 27(6): 1072-1080.
|
[15] |
孙雪. 草鱼生长相关SNPs标记的筛选及优势基因型的聚合效果分析[D]. 上海: 上海海洋大学, 2020: 15.
|
[16] |
MARANDEL L, SEILIEZ I, VERON V, et al. New insights into the nutritional regulation of gluconeogenesis in carnivorous rainbow trout (Oncorhynchus mykiss): a gene duplication trail[J]. Physiol Genomics, 2015, 47(7): 253-263. doi: 10.1152/physiolgenomics.00026.2015
|
[17] |
BOONANUNTANASARN S, KUMKHONG S, YOOHAT K, et al. Molecular responses of Nile tilapia (Oreochromis niloticus) to different levels of dietary carbohydrates[J]. Aquaculture, 2018, 482: 117-123. doi: 10.1016/j.aquaculture.2017.09.032
|
[18] |
陈团, 胡毅, 张德洪, 等. 不同糖源膨化饲料对大规格草鱼生长、越冬及血清部分生化指标的影响[J]. 水产学报, 2019, 43(4): 1069-1079.
|
[19] |
FANG L, GUO X, LIANG X F. First feeding of grass carp (Ctenopharyngodon idellus) with a high-carbohydrate diet: the effect on glucose metabolism in juveniles[J]. Aquac Rep, 2021, 21: 100830. doi: 10.1016/j.aqrep.2021.100830
|
[20] |
LI A X, YUAN X C, LIANG X F, et al. Adaptations of lipid metabolism and food intake in response to low and high fat diets in juvenile grass carp (Ctenopharyngodon idellus)[J]. Aquaculture, 2016, 457: 43-49. doi: 10.1016/j.aquaculture.2016.01.014
|
[21] |
GONG L, HE H C, LI D J, et al. A new isolate of Pediococcus pentosaceus (SL001) with antibacterial activity against fish pathogens and potency in facilitating the immunity and growth performance of grass carps[J]. Front Microbiol, 2019, 10: 1384. doi: 10.3389/fmicb.2019.01384
|
[22] |
GAO W, LIU Y J, TIAN L X, et al. Effect of dietary carbohydrate-to-lipid ratios on growth performance, body composition, nutrient utilization and hepatic enzymes activities of herbivorous grass carp (Ctenopharyngodon idella)[J]. Aquac Nutr, 2010, 16(3): 327-333.
|
[23] |
胡毅, 陈云飞, 张德洪, 等. 不同碳水化合物和蛋白质水平膨化饲料对大规格草鱼生长、肠道消化酶及血清指标的影响[J]. 水产学报, 2018, 42(5): 777-786.
|
[24] |
SONG X R, LIU H K, HAN D, et al. Two strains of gibel carp (Carassius gibelio) exhibit diverse responses to carbohydrates in a low-lipid diet[J]. Aquac Nutr, 2022, 2022: 9417331. DOI: 10.1155/2022/9417331.
|
[25] |
SONG X R, MARANDEL L, SKIBA-CASSY S, et al. Regulation by dietary carbohydrates of intermediary metabolism in liver and muscle of two isogenic lines of rainbow trout[J]. Front Physiol, 2018, 9: 1579. doi: 10.3389/fphys.2018.01579
|
[26] |
YUAN X C, ZHOU Y, LIANG X F, et al. Molecular cloning, expression and activity of pyruvate kinase in grass carp Ctenopharyngodon idella: Effects of dietary carbohydrate level[J]. Aquaculture, 2013, 410/411: 32-40. doi: 10.1016/j.aquaculture.2013.06.009
|
[27] |
WANG J T, LI X Y, HAN T, et al. Effects of different dietary carbohydrate levels on growth, feed utilization and body composition of juvenile grouper Epinephelus akaara[J]. Aquaculture, 2016, 459: 143-147. doi: 10.1016/j.aquaculture.2016.03.034
|
[28] |
LI X F, LIU W B, LU K L, et al. Dietary carbohydrate/lipid ratios affect stress, oxidative status and non-specific immune responses of fingerling blunt snout bream, Megalobrama amblycephala[J]. Fish Shellfish Immunol, 2012, 33(2): 316-323. doi: 10.1016/j.fsi.2012.05.007
|
[29] |
ABIMORAD E G, CARNEIRO D J, URBINATI E C. Growth and metabolism of pacu (Piaractus mesopotamicus Holmberg 1887) juveniles fed diets containing different protein, lipid and carbohydrate levels[J]. Aquac Res, 2007, 38(1): 36-44. doi: 10.1111/j.1365-2109.2006.01621.x
|
[30] |
VASQUEZ-TORRES W, ARIAS-CASTELLANOS J A. Effect of dietary carbohydrates and lipids on growth in cachama (Piaractus brachypomus)[J]. Aquac Res, 2013, 44(11): 1768-1776.
|
[31] |
YE W J, TAN X Y, CHEN Y D, et al. Effects of dietary protein to carbohydrate ratios on growth and body composition of juvenile yellow catfish, Pelteobagrus fulvidraco (Siluriformes, Bagridae, Pelteobagrus)[J]. Aquac Res, 2009, 40(12): 1410-1418. doi: 10.1111/j.1365-2109.2009.02239.x
|
[32] |
TIAN J, WU F, YU L J, et al. The effects of high-macronutrient (protein, fat and carbohydrate) diets on growth performance and muscular metabolic responses in grass carp[J]. Aquac Nutr, 2020, 26(6): 2135-2146. doi: 10.1111/anu.13152
|
[33] |
WANG J L, LU R H, SUN J J, et al. Differential expression of lipid metabolism-related genes and miRNAs in Ctenopharyngodon idella liver in relation to fatty liver induced by high non-protein energy diets[J]. Aquac Nutr, 2017, 48(8): 4070-4085.
|
[34] |
付兵, 郁二蒙, 王广军, 等. 投喂蚕豆对草鱼肝脏脂肪蓄积及脂肪代谢的影响[J]. 上海海洋大学学报, 2020, 29(1): 45-54. doi: 10.12024/jsou.20190302546
|
[35] |
CAHU C L, GISBERT E, VILLENEUVE L, et al. Influence of dietary phospholipids on early ontogenesis of fish[J]. Aquac Res, 2009, 40(9): 989-999. doi: 10.1111/j.1365-2109.2009.02190.x
|
[36] |
LI X F, XU C, ZHANG D D, et al. Molecular characterization and expression analysis of glucokinase from herbivorous fish Megalobrama amblycephala subjected to a glucose load after the adaption to dietary carbohydrate levels[J]. Aquaculture, 2016, 459: 89-98. doi: 10.1016/j.aquaculture.2016.03.035
|
[37] |
SONG X R, MARANDEL L, DUPONT-NIVET M, et al. Hepatic glucose metabolic responses to digestible dietary carbohydrates in two isogenic lines of rainbow trout[J]. Biol Open, 2018, 7(6): bio032896.
|
[38] |
徐晶, 梁旭方, 蔡文静, 等. 草鱼3个6-磷酸葡萄糖酶催化亚基的基因表达分析及高糖饲料对其表达的影响[J]. 中国水产科学, 2020, 27(1): 24-34.
|
[39] |
QIANG J, YANG H, HE J, et al. Comparative study of the effects of two high-carbohydrate diets on growth and hepatic carbohydrate metabolic enzyme responses in juvenile GIFT tilapia (Oreochromis niloticus)[J]. Turkish J Fish Aquat, 2014, 14(2): 515-525.
|
[40] |
SHI H J, LIU W B, XU C, et al. Transcriptional regulation of the AMP-activated protein kinase and glycolipid metabolism-related genes by insulin and glucagon in blunt snout bream (Megalobrama amblycephala): a comparative study[J]. Aquaculture, 2020, 515: 734553. doi: 10.1016/j.aquaculture.2019.734553
|
[1] | CHEN Xiaohong, SHEN Xiaona, XU Yibin, XU Cuiya, ZHENG Huidong. Analysis of tetrodotoxin and microbial community structure in Nassarius semiplicatus[J]. South China Fisheries Science. DOI: 10.12131/20240235 |
[2] | TIAN Tian, ZHANG Jianming, ZHANG Dezhi, ZHU Xin, LI Yang. Effect of mosaic disease on skin mucosa microbial community structure of Chinese sturgeon (Acipenser sinensis)[J]. South China Fisheries Science, 2024, 20(5): 186-192. DOI: 10.12131/20240107 |
[3] | TIAN Tian, ZHANG Jianming, ZHU Xin, ZHANG Dezhi, SHU Tingting. Analysis of microbiammunl coity structure and potential pathogens in mucus, intestinal content of Acipenser dabryanus and culture water[J]. South China Fisheries Science, 2023, 19(6): 71-83. DOI: 10.12131/20230092 |
[4] | WANG Yao, LI Hongyu, QI Xiangming, MAO Xiangzhao, DONG Hao, GUO Xiaohua. Analysis of solid-state anaerobic fermentation process of mackerel processing by-products by high-throughput sequencing[J]. South China Fisheries Science, 2022, 18(4): 136-146. DOI: 10.12131/20210285 |
[5] | ZHANG Kai, LIN Yijing, LI Chenyang, LIU Fangling, SHEN Minghao, ZHENG Shanjian. Effects of different C/N ratios on formation of biofloc, water quality and microflora in aquaculture water of Chinemys reevesii[J]. South China Fisheries Science, 2022, 18(4): 87-94. DOI: 10.12131/20200144 |
[6] | TAO Feiyan, PAN Chuang, CHEN Shengjun, HU Xiao, DENG Jianchao, LI Chunsheng, RONG Hui, WANG Yueqi. Microbial analysis of Litopenaeus vannamei during partial freezing storage by Illumina high throughput sequencing[J]. South China Fisheries Science, 2021, 17(2): 104-113. DOI: 10.12131/20200211 |
[7] | SUN Yongxu, DONG Hongbiao, WANG Wenhao, CAO Ming, DUAN Yafei, LI Hua, LIU Qingsong, ZHANG Jiasong. Effects of periodic hypoxia stress on intestinal microflora structure of Lateolabrax maculatus[J]. South China Fisheries Science, 2019, 15(4): 46-52. DOI: 10.12131/20190021 |
[8] | XIN Yanjie, HU Xiaojuan, CAO Yucheng, XU Yu, XU Yunna, SU Haochang, XU Chuangwen, WEN Guoliang, LI Zhuojia. Effects of inoculant of photosynthetic bacteria and Rhodopseudomonas palustris on nitrogen and phosphorus nutrients and microbial community in experimental water[J]. South China Fisheries Science, 2019, 15(1): 31-41. DOI: 10.12131/20180144 |
[9] | LI Xuguang, QI Zhanhui, LIN Lin, ZHANG Zhe, HUANG Honghui. Preliminary study on archaeal community in sediment of Dapeng Cove using high-throughput sequencing[J]. South China Fisheries Science, 2015, 11(6): 1-8. DOI: 10.3969/j.issn.2095-0780.2015.06.001 |
[10] | YANG Bing, LIN Lin, LI Chunhou, XU Shannan, LIU Yong, XIAO Yayuan, CHEN Zuozhi. Development and evaluation of microsatellite markers in Parargyrops edita[J]. South China Fisheries Science, 2015, 11(4): 116-120. DOI: 10.3969/j.issn.2095-0780.2015.04.017 |
1. |
史银魁,俞立雄,周雪,高雷,朱峰跃,杨锦毅,陈大庆,王珂,段辛斌. 禁渔初期长江宜昌-城陵矶江段鱼类资源时空分布特征. 水生生物学报. 2024(04): 546-558 .
![]() | |
2. |
张丽媛,熊清海,田敏,刘淑伟,王慧,曲品,蒋荣明,杨剑虹. 阳宗海鱼类群落结构及变化. 云南农业大学学报(自然科学). 2024(02): 60-69 .
![]() | |
3. |
史艳萍,屈婵娟,许旺,周春花,梁璐,王宇翔,任文伟,戴年华,徐晓娟,黎栩霞,计勇,吴小平,金斌松. 基于环境DNA宏条形码的青岚湖自然保护区鱼类组成及分布特征. 中国环境监测. 2024(03): 235-246 .
![]() | |
4. |
曹寿清,杨思雅,胡江春,杨慕静. 泸沽湖小口裂腹鱼人工驯养繁育试验. 水产养殖. 2024(07): 44-47 .
![]() | |
5. |
张航,梁智策,匡晨亿,周婷,廖传松,苑晶,郭传波,刘家寿. 基于水声学和渔获物调查的洱海鱼类资源时空分布特征. 水生生物学报. 2024(12): 2029-2041 .
![]() | |
6. |
贾春艳,王珂,李慧峰,高雷,杨浩,刘绍平,陈大庆,段辛斌. 禁渔初期东洞庭湖鱼类资源的空间分布与密度变化. 南方水产科学. 2022(03): 48-56 .
![]() | |
7. |
王书献,张胜茂,戴阳,王永进,隋江华,朱文斌. 利用声呐数据提取磷虾捕捞深度方法研究. 南方水产科学. 2021(04): 91-97 .
![]() | |
8. |
梁祥,薛绍伟,武智,王静,张建斌,赖宝衡,胡智光. 云龙水库鱼类资源声学评估. 西南农业学报. 2021(09): 2057-2062 .
![]() | |
9. |
徐川,胡正春. 核电厂冷源安全渔业资源声学调查. 电力安全技术. 2020(10): 55-59 .
![]() |