LIU Zhuoying, XU Min, GONG Yi, LI Yunkai. Trophic niche partitioning of pelagic shark of tropical Atlantic based on muscle and liver fatty acid profile analysis[J]. South China Fisheries Science, 2024, 20(3): 47-55. DOI: 10.12131/20230253
Citation: LIU Zhuoying, XU Min, GONG Yi, LI Yunkai. Trophic niche partitioning of pelagic shark of tropical Atlantic based on muscle and liver fatty acid profile analysis[J]. South China Fisheries Science, 2024, 20(3): 47-55. DOI: 10.12131/20230253

Trophic niche partitioning of pelagic shark of tropical Atlantic based on muscle and liver fatty acid profile analysis

More Information
  • Received Date: December 26, 2023
  • Revised Date: February 07, 2024
  • Available Online: March 15, 2024
  • Multi-tissue fatty acid profile analysis reflects dietary information of organisms at different time scales, which plays an important indicative role in exploring trophic niche partitioning among large apex predators. In this study, we investigated the trophic niche partitioning of four shark species in the upper middle layer of tropical Atlantic Ocean (Prionace glauca, Isurus paucus, Pseudocarcharias kamoharai, I. oxyrinchus) by measuring the fatty acid profiles of their muscle and liver, to reveal the short-term and long-term feeding strategies and nutritional relationships. The results show that the four shark species had diverse degrees of dietary or habitat variation, and high trophic niche overlap was found between I. paucus and P. kamoharai, with intense dietary and habitat competition. However, there was trophic niche partitioning between I. paucus and I. oxyrinchus, indicating their dietary separation. P. glauca had relatively longer trophic niche width, indicating greater environmental plasticity, while the smaller one of P. kamoharai indicates dietary specialization. Comparison of liver and muscle fatty acid profiles reveals variable resource allocation patterns among sharks over time, with the highest overlap of trophic niche between the muscle of I. oxyrinchus and P. glauca, but separation of livers suggests intense competition for long-term feeding. The results help to understand the coexistence mechanisms of pelagic sharks.

  • [1]
    李云凯, 高小迪, 王琳禹, 等. 东太平洋中部中上层鲨鱼群落营养生态位分化[J]. 应用生态学报, 2018, 29(1): 309-313.
    [2]
    BAUM J K, MYERS R A, KEHLER D G, et al. Collapse and conservation of shark populations in the northwest Atlantic[J]. Science, 2003, 299(5605): 389-392. doi: 10.1126/science.1079777
    [3]
    MYERS R A, BAUM J K, SHEPHERD T D, et al. Cascading effects of the loss of apex predatory sharks from a coastal ocean[J]. Science, 2007, 315(5820): 1846-1850. doi: 10.1126/science.1138657
    [4]
    戴小杰. 东太平洋主要几种中上层鲨鱼生物学和生态学研究[D]. 上海: 华东师范大学, 2004: 11-12.
    [5]
    沙永翠, 张培育, 张欢, 等. 栖息地环境对种群营养生态位的影响: 以黄颡鱼为例[J]. 生态学报, 2015, 35(5): 1321-1328.
    [6]
    SCHAUFLFLER L, HEINTZ R, SIGLER M, et al. Fatty acid composition of sleeper shark (Somniosus pacifificus) liver and muscle reveals nutritional dependence on planktivores[J]. ICES CM, 2005, 5: 1-19.
    [7]
    李云凯, 徐敏, 贡艺. 应用脂肪酸组成研究热带东太平洋同域中上层鲨鱼营养生态位分化[J]. 生态学报, 2022, 42(13): 5295-5302.
    [8]
    贡艺. 基于生物化学示踪物的东太平洋茎柔鱼摄食生态学研究[D]. 上海: 上海海洋大学, 2018: 10.
    [9]
    DALSGAARD J, JOHN M S, KATTNER G, et al. Fatty acid trophic markers in the pelagic marine environment[J]. Adv Mar Biol, 2003, 46(6): 225-340.
    [10]
    XU M, PETHYBRDGE H R, LI Y K. Trophic niche partitioning of five sympatric shark species in the tropical eastern Pacific Ocean revealed by multi-tissue fatty acid analysis[J]. Environ Res, 2022, 214: 113828. doi: 10.1016/j.envres.2022.113828
    [11]
    MCMEANS B C, ARTS M T, FISK A T. Similarity between predator and prey fatty acid profiles is tissue dependent in Greenland sharks (Somniosus microcephalus): implications for diet reconstruction[J]. J Exp Mar Biol Ecol, 2012, 429: 55-63. doi: 10.1016/j.jembe.2012.06.017
    [12]
    PETHYBRIDGE H R, PARRISH C C, BRUCE B D, et al. Lipid, fatty acid and energy density profiles of white sharks: insights into the feeding ecology and ecophysiology of a complex top predator[J]. PLoS One, 2014, 9(5): 1-10.
    [13]
    EDUARDO S, JOANNA A, JEFFREY M, et al. Stable isotope and fatty acid analyses reveal significant differences in trophic niches of smooth hammerhead Sphyrna zygaena (Carcharhiniformes) among three nursery areas in northern Humboldt Current System[J]. PeerJ, 2021, 9: e11283. doi: 10.7717/peerj.11283
    [14]
    FOLCH J, LEES M, SLOANE STANLEY G H. A simple method for the isolation and purification of total lipids from animal tissues[J]. J Biol Chem, 1957, 226(1): 497-509. doi: 10.1016/S0021-9258(18)64849-5
    [15]
    EVERY S L, PETHYBRIDGE H R, CROOK D A, et al. Comparison of fin and muscle tissues for analysis of signature fatty acids in tropical euryhaline sharks[J]. J Exp Mar Biol Ecol, 2016, 479: 46-53. doi: 10.1016/j.jembe.2016.02.011
    [16]
    MEYER L, PETHYBRIDGE H, NICHOLS P D, et al. Abiotic and biotic drivers of fatty acid tracers in ecology: a global analysis of chondrichthyan profiles[J]. Funct Ecol, 2019, 33(7): 1243-1255. doi: 10.1111/1365-2435.13328
    [17]
    PEDRO S, FISK A T, FERGUSON S H, et al. Broad feeding niches of capelin and sand lance may overlap those of polar cod and other native fish in the eastern Canadian Arctic[J]. Polar Biol, 2020, 43(11): 1707-1724. doi: 10.1007/s00300-020-02738-8
    [18]
    TOCHER D R. Fatty acid requirements in ontogeny of marine and freshwater fish[J]. Aquac Res, 2010, 41(5): 717-732. doi: 10.1111/j.1365-2109.2008.02150.x
    [19]
    IZQUIERDO M S, FERNANDE-PALACIOS H, TACON A G J. Effect of broodstock nutrition on reproductive performance of fish[J]. Aquaculture, 2001, 197(1/2/3/4): 25-42. doi: 10.1016/S0044-8486(01)00581-6
    [20]
    PARRISH C C, ABRAJANO T A, BUDGE S M, et al. Lipid and phenolic biomarkers in marine ecosystems: analysis and applications[J]. Mar Chem, 2000: 193-223.
    [21]
    赵峰, 庄平, 章龙珍, 等. 雌性成体点篮子鱼不同组织的脂肪酸组成分析[J]. 海洋渔业, 2009, 31(3): 288-292.
    [22]
    MEJRI S, LUCK C, TREMBLAY R, et al. Bonefish (Albula vulpes) oocyte lipid class and fatty acid composition related to their development[J]. Environ Biol Fish, 2019, 102(2): 221-232. doi: 10.1007/s10641-018-0825-0
    [23]
    KELLY J R, SCHEIBLING R E. Fatty acids as dietary tracers in benthic food web[J]. Mar Ecol Prog Ser, 2012, 446: 1-22. doi: 10.3354/meps09559
    [24]
    GALVAN-MAGANA F, POLO-SILVA C, HERNANDEZ-AGUILAR S B, et al. Shark predation on cephalopods in the Mexican and Ecuadorian Pacific Ocean[J]. Deep Sea Res II: Top Stud Oceanogr, 2013, 95: 52-62. doi: 10.1016/j.dsr2.2013.04.002
    [25]
    KELLY J R, SCHEIBLING R E, IVERSON S J. Fatty acids tracers for native and invasive macroalgae in an experimental food web[J]. Mar Ecol Prog Ser, 2009, 391: 53-63. doi: 10.3354/meps08234
    [26]
    HUETER R E, TYMINSKI J P, MORRIS J J, et al. Horizontal and vertical movements of longfin makos (Isurus paucus) tracked with satellitelinked tags in the Northwestern Atlantic Ocean[J]. Fish B-NOAA, 2016, 115(1): 101-116.
    [27]
    叶振江, 彭玉强, 何天庆, 等. 黄海近岸潮汐锋海域蟹类幼体日间垂直迁移特征[J]. 中国海洋大学学报 (自然科学版), 2022, 52(9): 35-42.
    [28]
    COELHO R, MACIAS D, de URBINA J O, et al. Local indicators for global species: pelagic sharks in the tropical northeast Atlantic, Cabo Verde islands region[J]. Ecol Indic, 2020, 110: 105942. doi: 10.1016/j.ecolind.2019.105942
    [29]
    MACNEIL M A, SKOMAL G B, FISK A T. Stable isotopes from multiple tissues reveal diet switching in sharks[J]. Mar Ecol Prog Ser, 2005, 302: 199-206. doi: 10.3354/meps302199
    [30]
    DAVID E, da SILEIRA, TORRES-ROJAS Y E, et al. Trophic interactions between shark species on the western coast of Baja California Sur: inferences from stable isotopes[J]. Reg Stud Mar Sci, 2020, 39: 101463.
    [31]
    HAZEL J R, WILLIAMS E E. The role of alternations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment[J]. Prog Lipid Res, 1990, 29(3): 167-227. doi: 10.1016/0163-7827(90)90002-3
    [32]
    徐敏. 基于脂肪酸组成分析热带东太平洋中上层鲨鱼营养生态位分化[D]. 上海: 上海海洋大学, 2022: 17-19.
    [33]
    BUDGE S M, PARRISH C C, MCKENZIE C H. Fatty acid composition of phytoplankton, settling particulate matter and sediments at a sheltered bivalve aquaculture site[J]. Mar Chem, 2001, 76(4): 285-303. doi: 10.1016/S0304-4203(01)00068-8
    [34]
    TAMBURIN E, KIM S L, ELORRIAGA-VERPLANCKEN F R, et al. Isotopic niche and resource sharing among young sharks (Carcharodon carcharias and Isurus oxyrinchus) in Baja California, Mexico[J]. Mar Ecol Prog Ser, 2019, 613: 107-124. doi: 10.3354/meps12884
    [35]
    ROGERS P J, HUVENEERS C, PAGE B, et al. Living on the continental shelf edge: habitat use of juvenile shortfin makos Isurus oxyrinchus in the Great Australian Bight, southern Australia[J]. Fish Oceanogr, 2015, 24(3): 205-218. doi: 10.1111/fog.12103
    [36]
    李云凯, 陈子昂, 贡艺, 等. 海洋动物营养生态位研究方法及其应用[J]. 热带海洋学报, 2021, 40(4): 143-156. doi: 10.11978/2020071
    [37]
    李永东, 杨旭, 贾国清, 等. 四川贡嘎山国家级自然保护区白马鸡与血雉的时空生态位分化[J]. 四川林业科技, 2022, 43(2): 47-55. doi: 10.12172/202107310001
    [38]
    ESTUPINAN-MONTANO C, GALVAN-MAGANA F. First insight into the biological aspects of the crocodile shark Pseudocarcharias kamoharai in the eastern Pacific Ocean[J]. Thalassas: An Int J Mar Sci, 2020, 37(1): 229-233.
    [39]
    ESTUPINAN-MONTANO C, DELGADO H A. Longfin mako shark, Isurus paucus, in the eastern tropical Pacific: first evidence of trophic ontogeny based on the isotopic analysis of long-term tissues[J]. Thalassas: An Int J Mar Sci, 2022, 38(1): 49-55. doi: 10.1007/s41208-022-00404-w
    [40]
    LI Y K, ZHANG Y Y, DAI X J. Trophic interactions among pelagic sharks and large predatory teleosts in the northeast central Pacific[J]. J Exp Mar Biol Ecol, 2016, 483: 97-103. doi: 10.1016/j.jembe.2016.04.013
    [41]
    SEPULVEDA C A, KOHIN S, CHAN C, et al. Movement patterns, depth preferences, and stomach temperatures of free-swimming juvenile mako sharks, Isurus oxyrinchus in the Southern California Bight[J]. Mar Biol, 2004, 145(1): 191-199.
    [42]
    KLARIAN S A, CANALES-CERRO C, BARRIA P, et al. New insights on the trophic ecology of blue (Prionace glauca) and shortfin mako sharks (Isurus oxyrinchus) from the oceanic eastern South Pacific[J]. Mar Biol Res, 2018, 14(2): 173-182. doi: 10.1080/17451000.2017.1396344
    [43]
    TREBERG J R, SPEERS-ROESCH B. Does the physiology of chondrichthyan fishes constrain their distribution in the deep sea?[J]. J Exp Biol, 2016, 219(5): 615-625. doi: 10.1242/jeb.128108
    [44]
    陈子昂, 吴峰, 戴小杰, 等. 基于多组织稳定同位素比值的热带大西洋4种鲨鱼营养生态位分化[J]. 应用生态学报, 2021, 32(6): 2014-2020.
    [45]
    MAIA A, QUEIROZ N, CORREIA J P, et al. Food habits of the shortfin mako, Isurus oxyrinchus, off the southwest coast of Portugal[J]. Environ Biol Fish, 2006, 77(2): 157-167. doi: 10.1007/s10641-006-9067-7
    [46]
    ESPINOZA M, MUNROE S E M, CLARKE T M, et al. Feeding ecology of common demersal elasmobranch species in the Pacific coast of Costa Rica inferred from stable isotope and stomach content analyses[J]. J Exp Mar Biol Ecol, 2015, 470: 12-25. doi: 10.1016/j.jembe.2015.04.021
    [47]
    WATANABE Y Y, GOLDMAN K J, CASELLE J E, et al. Comparative analyses of animal-tracking data reveal ecological significance of endothermy in fishes[J]. PNAS, 2015, 112(19): 6104-6109. doi: 10.1073/pnas.1500316112
  • Related Articles

    [1]QU Feihu, JIANG Xiaona, GE Yanlong, ZHAI Yushan, ZHANG Ling, WANG Jiyao, KOU Han, LI Chitao, HU Xuesong, SHI Xiaodan, JIA Zhiying. Research on feed protein requirement of Cyprinus carpio haematopterus[J]. South China Fisheries Science, 2024, 20(4): 124-132. DOI: 10.12131/20230234
    [2]LIU Jiaxing, GUO Huayang, ZHU Kecheng, LIU Baosuo, ZHANG Nan, XIAN Lin, ZHANG Dianchang. Effects of cysteine addition to low-fishmeal diets on metabolism of lipid and protein in juvenile Trachinotus ovatus[J]. South China Fisheries Science, 2023, 19(4): 116-125. DOI: 10.12131/20230030
    [3]CAI Miaomiao, CHEN Shengjun, YANG Xianqing, MA Haixia, DENG Jianchao, LI Chunsheng, HU Xiao, QI Bo. Extraction and antioxidant activity of protein from Grateloupia livida[J]. South China Fisheries Science, 2020, 16(2): 99-106. DOI: 10.12131/20190232
    [4]LIU Caihua, ZHU Xinrong, ZHANG Jian. Effects of three kinds of non-muscle proteins on quality of Coregouns peled muscle during partially frozen storage[J]. South China Fisheries Science, 2018, 14(2): 102-109. DOI: 10.3969/j.issn.2095-0780.2018.02.014
    [5]YU Ermeng, WANG Guangjun, ZHANG Zhennan, LI Zhifei, YU Deguang, XIA Yun, GONG Wangbao, XIE Jun. Microstructure and texture characteristics analysis of grass carp (Ctenopharyngodon idellus) muscle at different stages of crispness[J]. South China Fisheries Science, 2017, 13(2): 128-134. DOI: 10.3969/j.issn.2095-0780.2017.02.016
    [6]LI Na, ZHAO Yongqiang, LI Laihao, YANG Xianqing, HAO Shuxian, WEI Ya, CEN Jianwei, ZHANG Hongjie. Change of muscle proteins in Nile tilapia fillets during iced storage[J]. South China Fisheries Science, 2016, 12(2): 88-94. DOI: 10.3969/j.issn.2095-0780.2016.02.013
    [7]FANG Jing, ZHU Jinhu, HUANG Hui, LI Laihao, YANG Xianqing, HAO Shuxian, SHI Hong. Texture changes of Penaeus vannamei muscle during iced storage[J]. South China Fisheries Science, 2012, 8(6): 80-84. DOI: 10.3969/j.issn.2095-0780.2012.06.012
    [8]QIU Zefeng, ZHANG Liang, ZENG Weicai, JIAN Zhuoying, GAO Jialong, LIU Shucheng. Effect of frozen storage on muscle texture of Litopenaeus vannamei[J]. South China Fisheries Science, 2011, 7(5): 63-67. DOI: 10.3969/j.issn.2095-0780.2011.05.010
    [9]XU Yong′an, WU Jingna, SU Jie, YANG Yehui. Technology of recovering soluble protein from surimi washings by chitosan flocculating method[J]. South China Fisheries Science, 2011, 7(3): 1-7. DOI: 10.3969/j.issn.2095-0780.2011.03.001
    [10]LIU Xingwang, XU Dan, ZHANG Haitao, LIANG Hai′ou. Optimal dietary protein requirement for juvenile Trachinotus ovatus[J]. South China Fisheries Science, 2011, 7(1): 45-49. DOI: 10.3969/j.issn.2095-0780.2011.01.007
  • Cited by

    Periodical cited type(4)

    1. 袁毅,姜启兴,高沛,杨方,余达威,许艳顺,夏文水. 即食鱼胶产品的杀菌工艺. 水产学报. 2024(02): 180-188 .
    2. 张熙晨,李静鹏,邓夏彬阳,许安芸,王明科,邓力. 蒸制表面传热系数测定及其对品质动力学的影响. 食品与发酵科技. 2023(01): 73-82 .
    3. 闫寒,崔震昆,宋慕波,范翠翠,刘英健. 蓝光对三文鱼的杀菌作用及品质影响研究. 食品安全质量检测学报. 2023(09): 146-152 .
    4. 杨明畅,马俪珍,李来好,杨贤庆,陈胜军,魏涯,王悦齐,李春生,赵永强. 蛋白质免疫印迹技术在水产品中的应用. 食品安全质量检测学报. 2021(20): 7914-7919 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return