TONG Fei, QIN Chuanxin, YU Jing, CHEN Pimao. Ecological basis assessment of artificial reef site selection in Liuniu coastal waters of Zhelin Bay, Eastern Guangdong[J]. South China Fisheries Science, 2016, 12(6): 25-32. DOI: 10.3969/j.issn.2095-0780.2016.06.004
Citation: TONG Fei, QIN Chuanxin, YU Jing, CHEN Pimao. Ecological basis assessment of artificial reef site selection in Liuniu coastal waters of Zhelin Bay, Eastern Guangdong[J]. South China Fisheries Science, 2016, 12(6): 25-32. DOI: 10.3969/j.issn.2095-0780.2016.06.004

Ecological basis assessment of artificial reef site selection in Liuniu coastal waters of Zhelin Bay, Eastern Guangdong

More Information
  • Received Date: February 29, 2016
  • Revised Date: April 05, 2016
  • The AHP was employed to evaluate the stock protection artificial reef site selection based on ecosystem effect. We selected 30 marine environment and marine biological factors (hydrology, water quality, sediment, macrobenthos, swimming animals, primary productivity, intertidal macrobenthos, etc.) to establish an ecological evaluation model for artificial reef site selection. This paper tracked and monitored the selected factors at artificial reef site in the Liuniu coastal waters of Zhelin Bay in spring, summer, autumn and winter. The suitability of this area for building artificial reefs was discussed. According to the calculation results by this model, indices of ecological basis assessment for artificial reef site selection in each season were 0.65, 0.71, 0.63 and 0.64 with an average value of 0.66. The results show that there is a good ecological foundation for building artificial reef, and it is a suitable site to construct artificial reefs. The optimal ecological foundation is in summer.

  • [1]
    SCHROETER S C, REED D C, RAIMONDI P T. Effects of reef physical structure on development of benthic reef community: a large-scale artificial reef experiment[J]. Mar Ecol Prog Ser, 2015, 540: 43-55. doi: 10.3354/meps11483
    [2]
    GRANNEMAN J E, STEELE M A. Effects of reef attributes on fish assemblage similarity between artificial and natural reefs[J]. ICES J Mar Sci, 2015, 72(8): 2385-2397. doi: 10.1093/icesjms/fsv094
    [3]
    LEITAO F, SANTOS M N, ERZINI K, et al. Fish assemblages and rapid colonization after enlargement of an artificial reef off the Algarve coast (Southern Portugal)[J]. Mar Ecol, 2008, 29(4): 435-448. doi: 10.1111/j.1439-0485.2008.00253.x
    [4]
    李文涛, 张秀梅. 关于人工鱼礁礁址选择的探讨[J]. 现代渔业信息, 2003, 18(5): 3-6. doi: 10.3969/j.issn.1004-8340.2003.05.001
    [5]
    MOUSAVI S H, DANEHKAR A, SHOKRI M R, et al. Identification of effective criteria for artificial reefs site selection using analytical hierarchy process (AHP) methodology (a case study: coral reefs in the Kish Island)[J]. Oceanography, 2011, 2(5): 7.
    [6]
    KRAMER S H, HAMILTON C D, SPENCER G C, et al. Evaluating the potential for marine and hydrokinetic devices to act as artificial reefs or fish aggregating devices. based on analysis of surrogates in tropical, subtropical, and temperate US west coast and hawaiian coastal waters[R]. Honolulu: H.T. Harvey & Associates, 2015.
    [7]
    SU D T, LIU T L, OU C H. Numerical investigation into effects of seabed topography on flows in and around artificial reefs[J]. Fish Sci, 2008, 74(2): 236-254. doi: 10.1111/j.1444-2906.2008.01518.x
    [8]
    MOUSAVI S H, DANEHKAR A, SHOKRI M R, et al. Site selection for artificial reefs using a new combine Multi-Criteria Decision-Making (MCDM) tools for coral reefs in the Kish Island - Persian Gulf[J]. Ocean Coast Manag, 2015, 111: 92-102. doi: 10.1016/j.ocecoaman.2015.03.004
    [9]
    李梦杰. 组合式人工鱼礁的PIV二维流场效应与物理稳定性研究[D]. 上海: 上海海洋大学, 2015: 47.https://www.doc88.com/p-9774963162102.html
    [10]
    林军, 吴辉, 章守宇. 非结构网格海洋模式在洞头人工渔礁区选址中的应用[J]. 浙江海洋学院学报(自然科学版), 2009, 28(1): 57-62. doi: 10.3969/j.issn.1008-830X.2009.01.011
    [11]
    许强, 章守宇. 基于层次分析法的舟山市海洋牧场选址评价[J]. 上海海洋大学学报, 2013, 22(1): 128-133. http://shhydxxb.ijournals.cn/shhy/article/abstract/20120300368
    [12]
    周艳波, 陈丕茂, 李辉权. 广东省柘林湾海域溜牛礁区建礁可行性研究[J]. 广东农业科学, 2011, 38(23): 10-14. doi: 10.3969/j.issn.1004-874X.2011.23.003
    [13]
    XU F L, ZHAO Z Y, ZHAN W, et al. An ecosystem health index methodology (EHIM) for lake ecosystem health assessment[J]. Ecol Modell, 2005, 188(2/3/4): 327-339. https://www.sciencedirect.com/science/article/abs/pii/S0304380005001419
    [14]
    佟飞, 张秀梅, 吴忠鑫, 等. 荣成俚岛人工鱼礁区生态系统健康的评价[J]. 中国海洋大学学报(自然科学版), 2014, 44(4): 29-36. doi: 10.16441/j.cnki.hdxb.2014.04.005
    [15]
    李利. 廉州湾海域生态系统健康评价[D]. 青岛: 中国海洋大学, 2011: 39.https://www.doc88.com/p-9049332245159.html
    [16]
    尹增强, 章守宇. 东海区资源保护型人工鱼礁生态效果评价体系的初步研究[J]. 海洋渔业, 2012, 34(1): 23-31. doi: 10.3969/j.issn.1004-2490.2012.01.004
    [17]
    贾后磊, 谢健, 彭昆仑. 人工鱼礁选址合理性分析[J]. 海洋开发与管理, 2009, 26(4): 72-75. https://www.doc88.com/p-6939870584788.html
    [18]
    钟术求, 孙满昌, 章守宇, 等. 钢制四方台型人工鱼礁礁体设计及稳定性研究[J]. 海洋渔业, 2006, 28(3): 234-240. doi: 10.3969/j.issn.1004-2490.2006.03.011
    [19]
    袁梁英. 南海北部营养盐结构特征[D]. 厦门: 厦门大学, 2005: 23.https://www.zhangqiaokeyan.com/academic-degree-domestic_mphd_thesis/020311542750.html
    [20]
    江艳娥, 林昭进, 黄梓荣. 南海北部大陆架区渔业生物多样性研究[J]. 南方水产, 2009, 5(5): 32-37. https://www.schinafish.cn/article/exportPdf?id=2a3e6d43-6ad6-4e54-839a-30edc4149a21
    [21]
    许强. 海洋牧场选址问题的研究[D]. 上海: 上海海洋大学, 2012: 78.https://www.zhangqiaokeyan.com/academic-degree-domestic_mphd_thesis/020314222076.html
    [22]
    JAXION-HARM J, SZEDLMAYER S T. Depth and artificial reef type effects on size and distribution of red snapper in the Northern Gulf of Mexico[J]. N Am J Fish Manag, 2015, 35(1): 86-96. doi: 10.1080/02755947.2014.982332
    [23]
    彭璇, 马胜伟, 陈海刚, 等. 夏季柘林湾-南澳岛海洋牧场营养盐的空间分布及其评价[J]. 南方水产科学, 2014, 10(6): 27-35. doi: 10.3969/j.issn.2095-0780.2014.06.004
    [24]
    SCOTT M E, SMITH J A, LOWRY M B, et al. The influence of an offshore artificial reef on the abundance of fish in the surrounding pelagic environment[J]. Mar Freshw Res, 2015, 66(5): 429-437. doi: 10.1071/MF14064
    [25]
    朱小山, 杨炼锋. 广东柘林湾海水增养殖区环境质量评价[J]. 海洋通报, 2005, 24(1): 87-91. doi: 10.3969/j.issn.1001-6392.2005.01.015
    [26]
    朱四喜, 杨红丽, 朱臣, 等. 广东闸坡潮间带大型底栖动物的群落特征[J]. 浙江海洋学院学报(自然科学版), 2008, 27(1): 22-26. https://www.doc88.com/p-8592244344891.html
    [27]
    佟文天, 李捷, 王海艳, 等. 海南三亚风景区潮间带软体动物的资源现状研究[J]. 海洋科学, 2013, 37(8): 11-15. http://qdhys.cnjournals.com/hykx/ch/reader/create_pdf.aspx?file_no=20130803&flag=1&journal_id=hykx&year_id=2013
    [28]
    龚志军, 谢平, 唐汇涓, 等. 水体富营养化对大型底栖动物群落结构及多样性的影响[J]. 水生生物学报, 2001, 25(3): 210-216. http://ssswxb.ihb.ac.cn/cn/article/id/5bbef668-6d5b-41ba-a2e8-61e254ee0fcd
    [29]
    CRESSON P, RUITTON S, OURGAUD M, et al. Contrasting perception of fish trophic level from stomach content and stable isotope analyses: a Mediterranean artificial reef experience[J]. J Exp Mar Bio Ecol, 2014, 452: 54-62. https://www.sciencedirect.com/science/article/abs/pii/S0022098113004061
    [30]
    王飞, 张硕, 丁天明. 舟山海域人工鱼礁选址基于AHP的权重因子评价[J]. 海洋学研究, 2008, 26(1): 65-71. http://qikan.cqvip.com/Qikan/Article/Detail?id=26904027
    [31]
    潘本锋, 宫正宇, 王帅, 等. 环境空气质量指数在应用中存在的问题及建议[J]. 中国环境监测, 2015, 31(1): 64-67. doi: 10.3969/j.issn.1002-6002.2015.01.013
    [32]
    WALKER S J, SCHLACHER T A. Limited habitat and conservation value of a young artificial reef[J]. Biodivers Conserv, 2014, 23(2): 433-447. doi: 10.1007/s10531-013-0611-4
    [33]
    AJEMIAN M J, WETZ J J, SHIPLEY-LOZANO B, et al. An analysis of artificial reef fish community structure along the Northwestern Gulf of Mexico Shelf: potential impacts of "Rigs-to-Reefs" programs[J]. PLoS ONE, 2015, 10(5): e0126354. https://pmc.ncbi.nlm.nih.gov/articles/PMC4425496/
    [34]
    HENDERSON M J, FABRIZIO M C, LUCY J A. Movement patterns of summer flounder near an artificial reef: effects of fish size and environmental cues[J]. Fish Res, 2014, 153: 1-8. doi: 10.1016/J.FISHRES.2014.01.001
  • Cited by

    Periodical cited type(20)

    1. 史银魁,俞立雄,周雪,高雷,朱峰跃,杨锦毅,陈大庆,王珂,段辛斌. 禁渔初期长江宜昌-城陵矶江段鱼类资源时空分布特征. 水生生物学报. 2024(04): 546-558 .
    2. 田盼盼,李祥艳,邓华堂,王导群,刘绍平,陈大庆,段辛斌,王珂,田辉伍. 长江上游保护区干流江安-重庆段禁渔初期鱼类时空分布特点. 水生生物学报. 2024(04): 558-567 .
    3. 张翠萍,袁丽媚,吴妤莘,叶志权,陈晓莹,赖星星,李强,舒琥. 珠江口花鰶的生物学特征研究. 水生生物学报. 2023(04): 637-647 .
    4. 汤勇. 中国渔业资源声学评估研究与进展. 大连海洋大学学报. 2023(02): 185-195 .
    5. 黄月群,李文菁,黄寿琨,董堃. 鱼类行为监测技术应用研究. 水产学杂志. 2022(02): 102-107 .
    6. 贾春艳,王珂,李慧峰,高雷,杨浩,刘绍平,陈大庆,段辛斌. 禁渔初期东洞庭湖鱼类资源的空间分布与密度变化. 南方水产科学. 2022(03): 48-56 . 本站查看
    7. 黄稻田,武智,李捷,李新辉. 潭江广东鲂国家级水产种质资源保护区渔业资源现状分析. 乡村科技. 2021(04): 115-117 .
    8. 李哲,朱文斌,陈峰,李德伟,刘连为,张洪亮. 近年我国渔业资源声学评估研究进展. 浙江海洋大学学报(自然科学版). 2021(01): 80-85+92 .
    9. 王思凯,李九奇,刘永虎,刘崇焕. 海洋牧场开发的设备需求分析. 安徽农学通报. 2020(09): 92-94 .
    10. 黄月群,蔡德所,宋晓红,蒋萍萍,黄寿琨. 基于声学标签系统的鱼类运动轨迹监测技术. 南方水产科学. 2020(04): 114-120 . 本站查看
    11. 刘亚秋,李新辉,李跃飞,杨计平,徐田振. 广东鲂性腺发育组织学研究. 南方水产科学. 2019(01): 113-118 . 本站查看
    12. 黄立章,万小明,陈涛,张建华. 峡江鱼道过鱼效果初步评价. 渔业现代化. 2019(03): 83-88 .
    13. 曾艳艺,杨婉玲,李海燕,彭松耀,赖子尼. 珠江河网典型段基础碳源对水生动物的贡献. 生态学杂志. 2018(08): 2403-2410 .
    14. 郑盛春,吴志强,黄亮亮,封文利,师瑞丹,丁洋,常显志. 广西桂林青狮潭水库鱼类物种组成及多样性分析. 南方水产科学. 2017(02): 36-42 . 本站查看
    15. 武智,李新辉,李捷,陈方灿,朱书礼. 红水河岩滩水库鱼类资源声学评估. 南方水产科学. 2017(03): 20-25 . 本站查看
    16. 马燕芹,司纪锋. 基于水声技术的黄海近海鱼类活动定点监测研究. 渔业现代化. 2016(04): 70-75 .
    17. 梁建锋,杨志普,李鸿超,罗健民,姚婉仪. 珠江禁渔期制度下东江渔业资源与渔民经济效益. 农村经济与科技. 2016(13): 65-67 .
    18. 李斌,陈国宝,郭禹,陈作志,张俊,王东旭. 南海中部海域渔业资源时空分布和资源量的水声学评估. 南方水产科学. 2016(04): 28-37 . 本站查看
    19. 曹娜,钟治国,曹晓红,张沙龙,张轶超. 我国鱼道建设现状及典型案例分析. 水资源保护. 2016(06): 156-162 .
    20. 莫伟均,王从锋,秦孝辉,张敏娟,刘慧杰. 北盘江董箐与光照库区鱼类资源水声学调查. 水生态学杂志. 2015(03): 10-17 .

    Other cited types(12)

Catalog

    Article views (3456) PDF downloads (1114) Cited by(32)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return