MA Huan, QIN Chuanxin, CHEN Pimao, FENG Xue, YUAN Huarong, LI Xiaoguo, LIN Huijie. Study of biomass carbon storage in Zhelin Bay marine ranch of South China Sea[J]. South China Fisheries Science, 2017, 13(6): 56-64. DOI: 10.3969/j.issn.2095-0780.2017.06.007
Citation: MA Huan, QIN Chuanxin, CHEN Pimao, FENG Xue, YUAN Huarong, LI Xiaoguo, LIN Huijie. Study of biomass carbon storage in Zhelin Bay marine ranch of South China Sea[J]. South China Fisheries Science, 2017, 13(6): 56-64. DOI: 10.3969/j.issn.2095-0780.2017.06.007

Study of biomass carbon storage in Zhelin Bay marine ranch of South China Sea

More Information
  • Received Date: March 31, 2017
  • Revised Date: May 01, 2017
  • Accepted Date: May 10, 2017
  • To estimate the carbon content of marine organisms in Zhelin Bay marine ranch of the South China Sea and determine their carbon storage, we measured the carbon content of different tissues from the marine organisms in Zhelin Bay before and after ashing by elemental analysis method. The results show that:1) Before ashing, the average carbon concentrations of meat, bones(shell) and viscera were 37.72%~47.41%, 11.23%~34.91% and 27.58%~33.95%, respectively, among which Osteichihyes, Crustacea (shrimp), Gastropoda and Bivalvia had better carbon fixation ability, but except Cephalopoda, and the other species difference was not obvious. After ashing, the average carbon contents were 1.83%~8.28%, 1.90%~12.54% and 0.62%~8.29%, respectively, and the carbon fixation ability of Gastropoda was the highest, followed by that of Bivalvia. 2) The amount of fixed carbon by organisms was about 6.728×104 t in Zhelin Bay marine ranch in 2013, in which 0.155×104 t carbon was removed from the sea by harvests, accounting for 2.31% of the total carbon storage, and about 0.11×104 t carbon was deposited on the seabed, accounting for 1.7%. In addition, about 6.46×104t carbon was stored in the sea and may re-enter the carbon cycle, accounting for 95.98%. The features of marine organism carbon sinks are different, and marine ranching can increase carbon sink effectively.

  • [1]
    刘慧, 唐启升.国际海洋生物碳汇研究进展[J].中国水产科学, 2011, 18(3):695-702. http://www.cnki.com.cn/Article/CJFDTOTAL-ZSCK201103027.htm
    [2]
    PERSHING A J, CHRISTENSEN L B, RECORD N R, et al. The impact of whaling on the ocean carbon cycle:why bigger was better[J].PLoS One, 2010, 5(8):e12444. doi: 10.1371/journal.pone.0012444
    [3]
    WILSON R W, MILLERO F J, TAYLOR J R, et al. Contribution of fish to the marine inorganic carbon cycle[J].Science, 2009, 323(5912):359-362. doi: 10.1126/science.1157972
    [4]
    TAYLOR B W, FLECKER A S, HALL R O. Loss of a harvested fish species disrupts carbon flow in a diverse tropical river[J].Science, 2006, 313(5788):833-836. doi: 10.1126/science.1128223
    [5]
    唐启升, 刘慧.海洋渔业碳汇及其扩增战略[J].中国工程科学, 2016, 18(3):68-73. http://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201603013.htm
    [6]
    焦念志.海洋固碳与储碳——并论微型生物在其中的重要作用[J].中国科学:地球科学, 2012, 42(10):1473-1486. http://dspace.xmu.edu.cn/bitstream/handle/2288/108153/海洋固...
    [7]
    李纯厚, 贾晓平, 齐占会, 等.大亚湾海洋牧场低碳渔业生产效果评价[J].农业环境科学学报, 2011, 30(11):2346-2352. http://d.wanfangdata.com.cn/Conference/7559436
    [8]
    房立晨, 陈丕茂, 陈国宝, 等.汕尾遮浪角东人工鱼礁区渔业资源变动分析[J].广东农业科学, 2012, 39(18):158-162. doi: 10.3969/j.issn.1004-874X.2012.18.054
    [9]
    袁华荣, 陈丕茂, 贾晓平, 等.利用500 Hz方波连续音驯化南海真鲷幼鱼的效果[J].南方水产科学, 2012, 8(1):36-42. http://www.schinafish.cn/CN/abstract/abstract8932.shtml
    [10]
    周岩岩, 李纯厚, 陈丕茂, 等.龙须菜海藻场构建及其对水环境因子的影响[J].生态科学, 2011, 30(6):590-595. http://www.cnki.com.cn/Article/CJFDTOTAL-STKX201106006.htm
    [11]
    广东省统计局.广东统计年鉴[M].北京:中国统计出版社, 2014:283.
    [12]
    王迎宾, 刘群.应用世代分析法估算鱼类自然死亡率的初步研究[J].中国海洋大学学报(自然科学版), 2005, 35(5):725-732. doi: 10.3969/j.issn.1672-5174.2005.05.006
    [13]
    周毅, 杨红生, 刘石林, 等.烟台四十里湾浅海养殖生物及附着生物的化学组成、有机净生产量及其生态效应[J].水产学报, 2002, 26(1):21-27. http://www.cqvip.com/QK/90183X/200201/6183102.html
    [14]
    张继红, 方建光, 唐启升.中国浅海贝藻养殖对海洋碳循环的贡献[J].地球科学进展, 2005, 20(3):359-365. http://www.adearth.ac.cn/CN/abstract/abstract3365.shtml
    [15]
    CZAMANSKI M, NUGRAHA A, PONDAVEN P, et al. Carbon, nitrogen and phosphorus elemental stoichiometry in aquacultured and wild-caught fish and consequences for pelagic nutrient dynamics[J].Mar Biol, 2011, 158(12):2847-2862. doi: 10.1007/s00227-011-1783-7
    [16]
    权伟, 应苗苗, 康华靖, 等.中国近海海藻养殖及碳汇强度估算[J].水产学报, 2014, 38(4):510-515. http://www.cqvip.com/QK/90183X/201404/49439546.html
    [17]
    DUNG L V, TUE N T, MAI T N, et al. Carbon storage in a restored mangrove forest in Can Gio Mangrove Forest Park, Mekong Delta, Vietnam[J].Forest Ecol Manag, 2016, 380:31-40. doi: 10.1016/j.foreco.2016.08.032
    [18]
    周丽, 张卫强, 唐洪辉, 等.南亚热带中幼龄针阔混交林碳储量及其分配格局[J].生态环境学报, 2014, 23(4):568-574. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=...
    [19]
    ALONGI D M, MURDIYARSO D, FOURQUREAN J W, et al. Indonesia′s blue carbon:a globally significant and vulnerable sink for seagrass and mangrove carbon[J].Wetlands Ecol Manag, 2016, 24(1):3-13. doi: 10.1007/s11273-015-9446-y
    [20]
    KATHIRESAN K, GOMATHI V, ANBURAJ R, et al. Impact of mangrove vegetation on seasonal carbon burial and other sediment characteristics in the Vellar-Coleroon estuary, India[J].J Forestry Res, 2014, 25(4):787-794. doi: 10.1007/s11676-014-0526-2
    [21]
    SCHOO K L, MALZAHN A M, KRAUSE E, et al. Increased carbon dioxide availability alters phytoplankton stoichiometry and affects carbon cycling and growth of a marine planktonic herbivore[J].Mar Biol, 2013, 160(8):2145-2155. doi: 10.1007/s00227-012-2121-4
    [22]
    TANG Q S, ZHANG J H, FANG J. Shellfish and seaweed mariculture increase atmospheric CO2 absorption by coastal ecosystems[J].Mar Ecol Prog Ser, 2011, 424:97-104. doi: 10.3354/meps08979
    [23]
    孙军.海洋浮游植物与生物碳汇[J].生态学报, 2011, 31(18):5372-5378. http://www.doc88.com/p-709860753110.html
    [24]
    齐占会, 王珺, 黄洪辉, 等.广东省海水养殖贝藻类碳汇潜力评估[J].南方水产科学, 2012, 8(1):30-35. http://www.schinafish.cn/CN/abstract/abstract8933.shtml
    [25]
    卢振彬, 黄美珍.福建近海主要经济渔业生物营养级和有机碳含量研究[J].台湾海峡, 2004, 23(2):153-158. http://d.wanfangdata.com.cn/Periodical_twhx200402005.aspx
    [26]
    解绶启, 刘家寿, 李钟杰.淡水水体渔业碳移出之估算[J].渔业科学进展, 2013, 34(1):82-89. http://www.irgrid.ac.cn/handle/1471x/779965?mode=full
    [27]
    吴斌, 王海华, 习宏斌.中国淡水渔业碳汇强度估算[J].生物安全学报, 2016, 25(4):308-312. http://www.cnki.com.cn/Article/CJFDTOTAL-HDKC201604014.htm
    [28]
    吕为群, 陈阿琴, 刘慧.鱼类肠道的碳酸盐结晶物:海水鱼类养殖在碳汇渔业中的地位和作用[J].水产学报, 2012, 36(12):1924-1932. http://www.cqvip.com/QK/90183X/201212/44199999.html
    [29]
    宋金明, 李学刚, 袁华茂, 等.中国近海生物固碳强度与潜力[J].生态学报, 2008, 28(2):551-558. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB200802013.htm
    [30]
    张莉, 郭志华, 李志勇.红树林湿地碳储量及碳汇研究进展[J].应用生态学报, 2013, 24(4):1153-1159. http://www.cnki.com.cn/Article/CJFDTotal-YYSB201304040.htm
    [31]
    ALONGI D M. Carbon cycling and storage in mangrove forests[J].Ann Rev Mar Sci, 2014, 6(1):195-219. doi: 10.1146/annurev-marine-010213-135020
    [32]
    公丕海, 李娇, 关长涛, 等.莱州湾增殖礁附着牡蛎的固碳量试验与估算[J].应用生态学报, 2014, 25(10):3032-3038. http://www.cjae.net/CN/article/downloadArticleFile.do?attach...
    [33]
    张波, 孙珊, 唐启升.海洋捕捞业的碳汇功能[J].渔业科学进展, 2013, 34(1):70-74. http://www.cqvip.com/QK/90269A/201301/45223160.html
    [34]
    宋金明.中国近海生态系统碳循环与生物固碳[J].中国水产科学, 2011, 18(3):703-711. http://www.wenkuxiazai.com/doc/70fbe84084254b35effd3483-2.html
    [35]
    SARMA V S, KUNMAR M D, SAINO T. Impact of sinking carbon flux on accumulation of deep-ocean carbon in the Northern Indian Ocean[J].Biogeochemistry, 2007, 82(1):89-100. doi: 10.1007/s10533-006-9055-1
    [36]
    张乃星, 宋金明, 贺志鹏.海水颗粒有机碳(POC)变化的生物地球化学机制[J].生态学报, 2006, 26(7):2328-2339. http://www.doc88.com/p-6991233309158.html
    [37]
    PENDLETON L, DONATO D C, MURRAY B C, et al. Estimating global "blue carbon" emissions from conversion and degradation of vegetated coastal ecosystems[J].PLoS One, 2012, 7(9):e43542. doi: 10.1371/journal.pone.0043542
    [38]
    李纯厚, 齐占会, 黄洪辉, 等.海洋碳汇研究进展及南海碳汇渔业发展方向探讨[J].南方水产, 2010, 6(6):81-86. doi: 10.3969/j.issn.1673-2227.2010.06.015
  • Related Articles

    [1]CHEN Guobao, CHENG Gao, NIU Lulian, ZOU Jianwei, YU Jie, CHEN Pimao. Application of fishery acoustic frequency difference technology in fishery resource assessment of marine ranching in southern sea area of Yintan, Guangxi[J]. South China Fisheries Science, 2025, 21(2): 38-46. DOI: 10.12131/20240129
    [2]WEI Wendi, FENG Xue, YUAN Huarong, LI Xiaoguo, CHEN Pimao. Preliminary study on biological carbon storage of fishery resources in Zhuhai Wailingding marine ranching in spring[J]. South China Fisheries Science, 2024, 20(5): 71-80. DOI: 10.12131/20240023
    [3]NIU Lulian, CHEN Guobao, ZOU Jianwei, TONG Fei, YU Jie. Assessment of fishery resources in southern sea area of Yintan Marine Ranching, Guangxi Province[J]. South China Fisheries Science, 2024, 20(5): 53-62. DOI: 10.12131/20230236
    [4]WANG Yanfeng, HU Qiwei, YU Jing, CHEN Pimao, SHU Liming. Effect assessment of fishery resources proliferation in Zhelin Bay marine ranching in eastern Guangdong[J]. South China Fisheries Science, 2019, 15(2): 12-19. DOI: 10.12131/20180143
    [5]MA Huan, QIN Chuanxin, CHEN Pimao, LIN Huijie, DUAN Dingyu. Valuation of ecosystem service of marine ranching in Zhelin Bay[J]. South China Fisheries Science, 2019, 15(1): 10-19. DOI: 10.12131/20180041
    [6]YUAN Huarong, CHEN Pimao, QIN Chuanxin, LI Xiaoguo, ZHOU Yanbo, FENG Xue, YU Jing, SHU Liming, TANG Zhenzhao, TONG Fei. Seasonal variation of fish community structure in Zhelin Bay, the South China Sea[J]. South China Fisheries Science, 2017, 13(2): 26-35. DOI: 10.3969/j.issn.2095-0780.2017.02.004
    [7]PENG Xuan, MA Shengwei, CHEN Haigang, ZHANG Zhe, ZHOU Yanbo, CAI Wengui. Spatial distribution and assessment of nutrients in marine ranching in Zhelin Bay-Nanao Island in summer[J]. South China Fisheries Science, 2014, 10(6): 27-35. DOI: 10.3969/j.issn.2095-0780.2014.06.004
    [8]LI Chun-hou, QI Zhan-hui, HUANG Hong-hui, LIU Yong, KONG Xiao-lan, XIAO Ya-yuan. Review on marine carbon sink and development of carbon sink fisheries in South China Sea[J]. South China Fisheries Science, 2010, 6(6): 81-86. DOI: 10.3969/j.issn.1673-2227.2010.06.015
    [9]WANG Zenghuan, LIN Qin, WANG Xunuo, YANG Meilan. Analysis of heavy metal contents in marine organisms from Daya Bay[J]. South China Fisheries Science, 2009, 5(1): 23-28. DOI: 10.3969/j.issn.1673-2227.2009.01.004
    [10]WANG Xiao-wei, LI Chun-hou, SHEN Nan-nan. Effect of oil pollution on marine organism[J]. South China Fisheries Science, 2006, 2(2): 76-80.
  • Cited by

    Periodical cited type(27)

    1. 曾粤,李永娟,黄进强,吴深基,赵璐,孙同振,马九菊. 低氧胁迫对虹鳟心脏组织抗氧化和细胞凋亡的影响. 农业生物技术学报. 2025(01): 166-178 .
    2. 刘思炜,钟家美,范秀萍,秦小明,沈建,徐文其. 电晕休眠对卵形鲳鲹的生理应激和保活运输中主要营养成分的影响. 渔业科学进展. 2025(01): 210-221 .
    3. 马九菊,黄进强,李永娟,吴深基,赵璐,曾粤. 低氧胁迫对虹鳟心脏生化指标和低氧相关基因表达的影响. 渔业科学进展. 2025(01): 82-92 .
    4. 孟艳莎,杨哲,李欣阳,高居杰,艾力扎提·哈力夫,姜晨. 低氧胁迫对绿鳍马面鲀鳃组织抗氧化酶、呼吸相关酶及磷酸酶活性的影响. 水产科技情报. 2025(01): 20-25 .
    5. 余欣欣 ,郑国栋 ,陈杰 ,邹曙明 . 低氧胁迫对鱼类影响的研究进展. 水产科学. 2024(02): 333-340 .
    6. 林欣,谢希尧,区又君,李加儿,吴水清. 不同温度下四指马鲅幼鱼耗氧率及其窒息点研究. 渔业研究. 2024(02): 121-128 .
    7. 李谣,杨智茹,程景颢,李杰,王涛,张凯,张国松,尹绍武. 低氧胁迫和复氧对长吻鮠鳃组织低氧应答基因和生理生化指标的影响. 中国农学通报. 2023(02): 107-116 .
    8. 王文雯,杨静茹,付正祎,于刚,马振华. 运输时间对高体鰤幼鱼应激、代谢、抗氧化和免疫的影响. 中国渔业质量与标准. 2023(02): 25-36 .
    9. 程顺,蒋文枰,刘士力,迟美丽,郑建波,杭小英,彭苗,李飞. 溶氧水平对翘嘴鲌及其新品种全雌1号的影响研究. 浙江农业科学. 2023(06): 1332-1337 .
    10. 王文杰,陈博锦,姜欣彤,顾祎鑫,张正,魏艳超,王伟. 氧氟沙星慢性胁迫对黄盖鲽不同组织氧化应激的影响. 安徽农业科学. 2023(22): 80-83 .
    11. 杜欢,秦小明,范秀萍,张家胜,李盛基. CO_2协同低温有水对卵形鲳鲹麻醉保活效果的影响. 广东海洋大学学报. 2022(01): 35-43 .
    12. 段鹏飞,田永胜,李振通,李子奇,陈帅,黎琳琳,王心怡,王林娜,刘阳,李文升,王晓梅,李波. 棕点石斑鱼(♀)×蓝身大斑石斑鱼(♂)杂交后代与棕点石斑鱼低氧耐受能力初步研究. 中国水产科学. 2022(02): 220-233 .
    13. 卢军浩,李兰兰,权金强,赵桂研,孙军,蒋常平,刘哲. 小瓜虫对虹鳟组织病理变化及TLR信号通路基因表达影响. 农业生物技术学报. 2022(04): 739-750 .
    14. 钟智明,陈家宇,张静,汤保贵,于非非,赖文琪,朱洁雄. 基于代谢组学分析光强胁迫对卵形鲳鲹代谢的影响. 农业生物技术学报. 2022(04): 751-761 .
    15. 陈恺琳,马鹏生,黄建盛,黄德,王婷,黄小洲. 低氧胁迫对珍珠龙趸幼鱼组织超氧化物歧化酶SOD含量的影响. 江西水产科技. 2021(04): 16-18 .
    16. 徐畅,丁炜东,曹哲明,邴旭文,张晨光,谷心池,刘雨. 急性低氧胁迫对翘嘴鳜抗氧化酶、呼吸相关酶活性及相关基因表达的影响. 南方农业学报. 2020(03): 686-694 .
    17. 李洪娟,陈刚,郭志雄,王维政,黄建盛,曾泽乾. 军曹鱼(Rachycentron canadum)幼鱼对环境低氧胁迫氧化应激与能量利用指标的响应. 海洋学报. 2020(04): 12-19 .
    18. 王维政,曾泽乾,黄建盛,郭志雄,李洪娟,陈刚. 低氧胁迫对军曹鱼幼鱼抗氧化、免疫能力及能量代谢的影响. 广东海洋大学学报. 2020(05): 12-18 .
    19. 王文豪,董宏标,孙彩云,段亚飞,李华,刘青松,张家松,曾祥兵. 石菖蒲挥发油和水溶性氮酮对鱼用麻醉剂的促皮渗透效果研究. 南方水产科学. 2020(04): 62-68 . 本站查看
    20. 张倩,黄进强,权金强,吴深基,王晓谰,潘玉财. 急性低氧胁迫和复氧对鲫鱼氧化应激的影响. 水产科学. 2020(05): 649-656 .
    21. 黄小林,戴超,虞为,杨洁,杨育凯,李涛,林黑着,黄忠,孙莘溢,舒琥. 丁香酚对卵形鲳鲹幼鱼的麻醉效果. 广东海洋大学学报. 2020(04): 124-131 .
    22. 陈德举,强俊,陶易凡,包景文,朱昊俊,胡乐佳,徐跑. 不同溶氧水平对吉富罗非鱼幼鱼生长、血液生化、脂肪酸组成及其抗海豚链球菌病的影响. 淡水渔业. 2019(04): 83-89 .
    23. 刘思迅,周胜杰,韩明洋,王一福,洪嘉炜,顾志峰,马振华. 密度胁迫对卵形鲳鲹鱼苗运输水质、存活率、免疫酶活力和血清指标的影响. 海洋科学. 2019(04): 70-80 .
    24. 王海锋,成永旭,李京昊,奚业文,李嘉尧. 干露和再入水对克氏原螯虾抗氧化应激能力的影响. 南方水产科学. 2019(05): 69-76 . 本站查看
    25. 孙莘溢,黄小林,黄忠,曹晓聪,周婷,林黑着,舒琥,虞为,杨育凯,李涛. 卵形鲳鲹摄食、耗氧节律和胃肠排空时间的研究. 南方水产科学. 2019(05): 77-83 . 本站查看
    26. 陈旭,马振华,周胜杰,蒋伟明,杨其彬,杨蕊,彭晓瑜,刘思迅,于刚. 丁香酚对卵形鲳鲹鱼苗运输水质、成活率和生理生化指标的影响. 中国渔业质量与标准. 2019(06): 39-47 .
    27. 武晓会,刘洋,狄治朝,赵文静,王丛丛,许强华. 低氧对斑马鱼细胞存活能力的影响. 南方农业学报. 2018(08): 1641-1647 .

    Other cited types(27)

Catalog

    Article views (4140) PDF downloads (368) Cited by(54)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return