MA Huan, QIN Chuanxin, CHEN Pimao, FENG Xue, YUAN Huarong, LI Xiaoguo, LIN Huijie. Study of biomass carbon storage in Zhelin Bay marine ranch of South China Sea[J]. South China Fisheries Science, 2017, 13(6): 56-64. DOI: 10.3969/j.issn.2095-0780.2017.06.007
Citation: MA Huan, QIN Chuanxin, CHEN Pimao, FENG Xue, YUAN Huarong, LI Xiaoguo, LIN Huijie. Study of biomass carbon storage in Zhelin Bay marine ranch of South China Sea[J]. South China Fisheries Science, 2017, 13(6): 56-64. DOI: 10.3969/j.issn.2095-0780.2017.06.007

Study of biomass carbon storage in Zhelin Bay marine ranch of South China Sea

More Information
  • Received Date: March 31, 2017
  • Revised Date: May 01, 2017
  • Accepted Date: May 10, 2017
  • To estimate the carbon content of marine organisms in Zhelin Bay marine ranch of the South China Sea and determine their carbon storage, we measured the carbon content of different tissues from the marine organisms in Zhelin Bay before and after ashing by elemental analysis method. The results show that:1) Before ashing, the average carbon concentrations of meat, bones(shell) and viscera were 37.72%~47.41%, 11.23%~34.91% and 27.58%~33.95%, respectively, among which Osteichihyes, Crustacea (shrimp), Gastropoda and Bivalvia had better carbon fixation ability, but except Cephalopoda, and the other species difference was not obvious. After ashing, the average carbon contents were 1.83%~8.28%, 1.90%~12.54% and 0.62%~8.29%, respectively, and the carbon fixation ability of Gastropoda was the highest, followed by that of Bivalvia. 2) The amount of fixed carbon by organisms was about 6.728×104 t in Zhelin Bay marine ranch in 2013, in which 0.155×104 t carbon was removed from the sea by harvests, accounting for 2.31% of the total carbon storage, and about 0.11×104 t carbon was deposited on the seabed, accounting for 1.7%. In addition, about 6.46×104t carbon was stored in the sea and may re-enter the carbon cycle, accounting for 95.98%. The features of marine organism carbon sinks are different, and marine ranching can increase carbon sink effectively.

  • [1]
    刘慧, 唐启升.国际海洋生物碳汇研究进展[J].中国水产科学, 2011, 18(3):695-702. http://www.cnki.com.cn/Article/CJFDTOTAL-ZSCK201103027.htm
    [2]
    PERSHING A J, CHRISTENSEN L B, RECORD N R, et al. The impact of whaling on the ocean carbon cycle:why bigger was better[J].PLoS One, 2010, 5(8):e12444. doi: 10.1371/journal.pone.0012444
    [3]
    WILSON R W, MILLERO F J, TAYLOR J R, et al. Contribution of fish to the marine inorganic carbon cycle[J].Science, 2009, 323(5912):359-362. doi: 10.1126/science.1157972
    [4]
    TAYLOR B W, FLECKER A S, HALL R O. Loss of a harvested fish species disrupts carbon flow in a diverse tropical river[J].Science, 2006, 313(5788):833-836. doi: 10.1126/science.1128223
    [5]
    唐启升, 刘慧.海洋渔业碳汇及其扩增战略[J].中国工程科学, 2016, 18(3):68-73. http://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201603013.htm
    [6]
    焦念志.海洋固碳与储碳——并论微型生物在其中的重要作用[J].中国科学:地球科学, 2012, 42(10):1473-1486. http://dspace.xmu.edu.cn/bitstream/handle/2288/108153/海洋固...
    [7]
    李纯厚, 贾晓平, 齐占会, 等.大亚湾海洋牧场低碳渔业生产效果评价[J].农业环境科学学报, 2011, 30(11):2346-2352. http://d.wanfangdata.com.cn/Conference/7559436
    [8]
    房立晨, 陈丕茂, 陈国宝, 等.汕尾遮浪角东人工鱼礁区渔业资源变动分析[J].广东农业科学, 2012, 39(18):158-162. doi: 10.3969/j.issn.1004-874X.2012.18.054
    [9]
    袁华荣, 陈丕茂, 贾晓平, 等.利用500 Hz方波连续音驯化南海真鲷幼鱼的效果[J].南方水产科学, 2012, 8(1):36-42. http://www.schinafish.cn/CN/abstract/abstract8932.shtml
    [10]
    周岩岩, 李纯厚, 陈丕茂, 等.龙须菜海藻场构建及其对水环境因子的影响[J].生态科学, 2011, 30(6):590-595. http://www.cnki.com.cn/Article/CJFDTOTAL-STKX201106006.htm
    [11]
    广东省统计局.广东统计年鉴[M].北京:中国统计出版社, 2014:283.
    [12]
    王迎宾, 刘群.应用世代分析法估算鱼类自然死亡率的初步研究[J].中国海洋大学学报(自然科学版), 2005, 35(5):725-732. doi: 10.3969/j.issn.1672-5174.2005.05.006
    [13]
    周毅, 杨红生, 刘石林, 等.烟台四十里湾浅海养殖生物及附着生物的化学组成、有机净生产量及其生态效应[J].水产学报, 2002, 26(1):21-27. http://www.cqvip.com/QK/90183X/200201/6183102.html
    [14]
    张继红, 方建光, 唐启升.中国浅海贝藻养殖对海洋碳循环的贡献[J].地球科学进展, 2005, 20(3):359-365. http://www.adearth.ac.cn/CN/abstract/abstract3365.shtml
    [15]
    CZAMANSKI M, NUGRAHA A, PONDAVEN P, et al. Carbon, nitrogen and phosphorus elemental stoichiometry in aquacultured and wild-caught fish and consequences for pelagic nutrient dynamics[J].Mar Biol, 2011, 158(12):2847-2862. doi: 10.1007/s00227-011-1783-7
    [16]
    权伟, 应苗苗, 康华靖, 等.中国近海海藻养殖及碳汇强度估算[J].水产学报, 2014, 38(4):510-515. http://www.cqvip.com/QK/90183X/201404/49439546.html
    [17]
    DUNG L V, TUE N T, MAI T N, et al. Carbon storage in a restored mangrove forest in Can Gio Mangrove Forest Park, Mekong Delta, Vietnam[J].Forest Ecol Manag, 2016, 380:31-40. doi: 10.1016/j.foreco.2016.08.032
    [18]
    周丽, 张卫强, 唐洪辉, 等.南亚热带中幼龄针阔混交林碳储量及其分配格局[J].生态环境学报, 2014, 23(4):568-574. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=...
    [19]
    ALONGI D M, MURDIYARSO D, FOURQUREAN J W, et al. Indonesia′s blue carbon:a globally significant and vulnerable sink for seagrass and mangrove carbon[J].Wetlands Ecol Manag, 2016, 24(1):3-13. doi: 10.1007/s11273-015-9446-y
    [20]
    KATHIRESAN K, GOMATHI V, ANBURAJ R, et al. Impact of mangrove vegetation on seasonal carbon burial and other sediment characteristics in the Vellar-Coleroon estuary, India[J].J Forestry Res, 2014, 25(4):787-794. doi: 10.1007/s11676-014-0526-2
    [21]
    SCHOO K L, MALZAHN A M, KRAUSE E, et al. Increased carbon dioxide availability alters phytoplankton stoichiometry and affects carbon cycling and growth of a marine planktonic herbivore[J].Mar Biol, 2013, 160(8):2145-2155. doi: 10.1007/s00227-012-2121-4
    [22]
    TANG Q S, ZHANG J H, FANG J. Shellfish and seaweed mariculture increase atmospheric CO2 absorption by coastal ecosystems[J].Mar Ecol Prog Ser, 2011, 424:97-104. doi: 10.3354/meps08979
    [23]
    孙军.海洋浮游植物与生物碳汇[J].生态学报, 2011, 31(18):5372-5378. http://www.doc88.com/p-709860753110.html
    [24]
    齐占会, 王珺, 黄洪辉, 等.广东省海水养殖贝藻类碳汇潜力评估[J].南方水产科学, 2012, 8(1):30-35. http://www.schinafish.cn/CN/abstract/abstract8933.shtml
    [25]
    卢振彬, 黄美珍.福建近海主要经济渔业生物营养级和有机碳含量研究[J].台湾海峡, 2004, 23(2):153-158. http://d.wanfangdata.com.cn/Periodical_twhx200402005.aspx
    [26]
    解绶启, 刘家寿, 李钟杰.淡水水体渔业碳移出之估算[J].渔业科学进展, 2013, 34(1):82-89. http://www.irgrid.ac.cn/handle/1471x/779965?mode=full
    [27]
    吴斌, 王海华, 习宏斌.中国淡水渔业碳汇强度估算[J].生物安全学报, 2016, 25(4):308-312. http://www.cnki.com.cn/Article/CJFDTOTAL-HDKC201604014.htm
    [28]
    吕为群, 陈阿琴, 刘慧.鱼类肠道的碳酸盐结晶物:海水鱼类养殖在碳汇渔业中的地位和作用[J].水产学报, 2012, 36(12):1924-1932. http://www.cqvip.com/QK/90183X/201212/44199999.html
    [29]
    宋金明, 李学刚, 袁华茂, 等.中国近海生物固碳强度与潜力[J].生态学报, 2008, 28(2):551-558. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB200802013.htm
    [30]
    张莉, 郭志华, 李志勇.红树林湿地碳储量及碳汇研究进展[J].应用生态学报, 2013, 24(4):1153-1159. http://www.cnki.com.cn/Article/CJFDTotal-YYSB201304040.htm
    [31]
    ALONGI D M. Carbon cycling and storage in mangrove forests[J].Ann Rev Mar Sci, 2014, 6(1):195-219. doi: 10.1146/annurev-marine-010213-135020
    [32]
    公丕海, 李娇, 关长涛, 等.莱州湾增殖礁附着牡蛎的固碳量试验与估算[J].应用生态学报, 2014, 25(10):3032-3038. http://www.cjae.net/CN/article/downloadArticleFile.do?attach...
    [33]
    张波, 孙珊, 唐启升.海洋捕捞业的碳汇功能[J].渔业科学进展, 2013, 34(1):70-74. http://www.cqvip.com/QK/90269A/201301/45223160.html
    [34]
    宋金明.中国近海生态系统碳循环与生物固碳[J].中国水产科学, 2011, 18(3):703-711. http://www.wenkuxiazai.com/doc/70fbe84084254b35effd3483-2.html
    [35]
    SARMA V S, KUNMAR M D, SAINO T. Impact of sinking carbon flux on accumulation of deep-ocean carbon in the Northern Indian Ocean[J].Biogeochemistry, 2007, 82(1):89-100. doi: 10.1007/s10533-006-9055-1
    [36]
    张乃星, 宋金明, 贺志鹏.海水颗粒有机碳(POC)变化的生物地球化学机制[J].生态学报, 2006, 26(7):2328-2339. http://www.doc88.com/p-6991233309158.html
    [37]
    PENDLETON L, DONATO D C, MURRAY B C, et al. Estimating global "blue carbon" emissions from conversion and degradation of vegetated coastal ecosystems[J].PLoS One, 2012, 7(9):e43542. doi: 10.1371/journal.pone.0043542
    [38]
    李纯厚, 齐占会, 黄洪辉, 等.海洋碳汇研究进展及南海碳汇渔业发展方向探讨[J].南方水产, 2010, 6(6):81-86. doi: 10.3969/j.issn.1673-2227.2010.06.015
  • Related Articles

    [1]WEI Wendi, FENG Xue, YUAN Huarong, LI Xiaoguo, CHEN Pimao. Preliminary study on biological carbon storage of fishery resources in Zhuhai Wailingding marine ranching in spring[J]. South China Fisheries Science, 2024, 20(5): 71-80. DOI: 10.12131/20240023
    [2]XIE Xiaoyan, CHEN Pimao, TONG Fei, YUAN Huarong, FENG Xue, YU Jing, YU Jie, SHU Liming. Site selection of marine ranching in Wailingding Island sea area of Zhuhai[J]. South China Fisheries Science, 2022, 18(5): 18-29. DOI: 10.12131/20210241
    [3]WANG Yanfeng, HU Qiwei, YU Jing, CHEN Pimao, SHU Liming. Effect assessment of fishery resources proliferation in Zhelin Bay marine ranching in eastern Guangdong[J]. South China Fisheries Science, 2019, 15(2): 12-19. DOI: 10.12131/20180143
    [4]MA Huan, QIN Chuanxin, CHEN Pimao, LIN Huijie, DUAN Dingyu. Valuation of ecosystem service of marine ranching in Zhelin Bay[J]. South China Fisheries Science, 2019, 15(1): 10-19. DOI: 10.12131/20180041
    [5]YUAN Huarong, CHEN Pimao, QIN Chuanxin, LI Xiaoguo, ZHOU Yanbo, FENG Xue, YU Jing, SHU Liming, TANG Zhenzhao, TONG Fei. Seasonal variation of fish community structure in Zhelin Bay, the South China Sea[J]. South China Fisheries Science, 2017, 13(2): 26-35. DOI: 10.3969/j.issn.2095-0780.2017.02.004
    [6]PENG Xuan, MA Shengwei, CHEN Haigang, ZHANG Zhe, ZHOU Yanbo, CAI Wengui. Spatial distribution and assessment of nutrients in marine ranching in Zhelin Bay-Nanao Island in summer[J]. South China Fisheries Science, 2014, 10(6): 27-35. DOI: 10.3969/j.issn.2095-0780.2014.06.004
    [7]LI Chun-hou, QI Zhan-hui, HUANG Hong-hui, LIU Yong, KONG Xiao-lan, XIAO Ya-yuan. Review on marine carbon sink and development of carbon sink fisheries in South China Sea[J]. South China Fisheries Science, 2010, 6(6): 81-86. DOI: 10.3969/j.issn.1673-2227.2010.06.015
    [8]WANG Zenghuan, LIN Qin, WANG Xunuo. Analysis of lead content in marine organisms and risk assessment in Daya Bay[J]. South China Fisheries Science, 2010, 6(1): 54-58. DOI: 10.3969/j.issn.1673-2227.2010.01.010
    [9]WANG Zenghuan, LIN Qin, WANG Xunuo, YANG Meilan. Analysis of heavy metal contents in marine organisms from Daya Bay[J]. South China Fisheries Science, 2009, 5(1): 23-28. DOI: 10.3969/j.issn.1673-2227.2009.01.004
    [10]LI Chun-hou, JIA Xiao-ping. Advances and hot topics for the marine biodiversity protection in China[J]. South China Fisheries Science, 2005, 1(1): 66-70.
  • Cited by

    Periodical cited type(10)

    1. 李梦迪,李娇,薛月光,关长涛,公丕海,段勇杰,程浩. 基于灰色-马尔科夫模型评估石雀滩海洋牧场岩礁鱼类碳储量. 渔业科学进展. 2024(01): 14-22 .
    2. 魏文迪,冯雪,袁华荣,黎小国,陈丕茂. 珠海外伶仃海洋牧场春季渔业资源生物碳储量初探. 南方水产科学. 2024(05): 71-80 . 本站查看
    3. 刘珺,周培国,黄靖宇. CO_2摩尔分数倍增对秋茄·桐花树碳储量的影响. 安徽农业科学. 2022(12): 100-104 .
    4. 张继红,刘毅,吴文广,王新萌,仲毅. 海洋渔业碳汇项目方法学探究. 渔业科学进展. 2022(05): 151-159 .
    5. 李娇,李梦迪,公丕海,关长涛. 海洋牧场渔业碳汇研究进展. 渔业科学进展. 2022(05): 142-150 .
    6. 向爱,揣小伟,李家胜. 中国沿海省份蓝碳现状与能力评估. 资源科学. 2022(06): 1138-1154 .
    7. 段丁毓,秦传新,朱文涛,马鸿梅. 海洋牧场景观生态分类研究:以柘林湾海洋牧场为例. 渔业科学进展. 2020(02): 1-11 .
    8. 黄利,于焕生,何丹,陈珂. 国内碳汇研究进展与前沿动态追踪——基于CNKI期刊文献的可视化分析. 林业经济. 2020(04): 46-55 .
    9. 马欢,秦传新,陈丕茂,林会洁,段丁毓. 柘林湾海洋牧场生态系统服务价值评估. 南方水产科学. 2019(01): 10-19 . 本站查看
    10. 段丁毓,秦传新,朱文涛,马鸿梅. 粤东柘林湾海洋牧场景观结构与格局的分析研究. 水产学报. 2019(09): 1981-1992 .

    Other cited types(6)

Catalog

    Article views (4134) PDF downloads (366) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return