Citation: | ZHANG Lirong, HAO Huimin, NIE Zhulan, WEI Jie, ZHANG Dieyan. Feeding habits of Triplophysa tenuis in Xinjiang based on fatty acid and stable carbon and nitrogen isotopic analysis[J]. South China Fisheries Science, 2024, 20(2): 92-101. DOI: 10.12131/20230187 |
Triplophysa tenuis plays an important role in maintaining the flow of material and energy in aquatic ecosystem. In this study, we applied fatty acid biomarker method and carbon and nitrogen stable isotope technique to study the feeding and nutritional ecological niche characteristics of T. tenuis. The results show that a total of 22 fatty acids were detected in the muscle, including eight kinds of saturated fatty acids (SFA), six kinds of monounsaturated fatty acids (MUFA) and eight kinds of polyunsaturated fatty acids (PUFA). The specific fatty acid analysis reveals that T. tenuis feeds on zooplankton, diatoms, land plants, or fish and shrimps that like to feed on diatoms. The carbon stable isotope (δ13C) values and nitrogen stable isotope (δ15N) values ranged from −27.09‰ to −20.98‰ and from 5.71‰ to 8.45‰, while trophic levels ranged from 2.68 to 3.48. There were no significant differences between males and females (P>0.05) in δ13C value, δ15N value or trophic level. Males had higher standard ellipse area (SEAc) and total area of convex hull (TA) than females. There were significant changes in δ13C values with increasing body length (P<0.01), and insignificant changes in δ15N values and trophic level. The SEAc areas of 70−80 mm body length group did not overlap with those of greater than 90 mm body length group, and were categorized into different groups in the cluster analysis. In conclusion, T. tenuis is omnivorous and its food composition varies with body length As a predator with high trophic level, it can extend the food length chain length and increase the complexity of food web, which is conducive to the maintenance of stability of aquatic ecosystem.
[1] |
郭焱, 张人铭, 蔡林钢. 新疆鱼类志[M]. 乌鲁木齐: 新疆科学技术出版社, 2012: 114-115.
|
[2] |
金珊珊, 王新月, 林欣, 等. 新疆开都河长身高原鳅的年龄与生长的关系[J]. 新疆农业科学, 2020, 57(1): 181-189.
|
[3] |
曾霖, 唐文乔. 两种无鳞高原鳅年龄鉴定方法探讨[J]. 动物学杂志, 2010, 45(1): 94-103.
|
[4] |
马燕武, 郭焱, 陈朋, 等. 新疆开都河鱼类区系组成与分布[J]. 淡水渔业, 2013, 43(5): 21-26. doi: 10.3969/j.issn.1000-6907.2013.05.004
|
[5] |
MOTTA P J, CLIFTON K B, HERNANDEZ P, et al. Ecomorphological correlates in ten species of subtropical seagrass fishes: diet and microhabitat utilization[J]. Environ Biol Fish, 1995, 44(1): 37-60.
|
[6] |
PIET G J. Ecomorphology of a size-structured tropical freshwater fish community[J]. Environ Biol Fish, 1998, 51(1): 67-86. doi: 10.1023/A:1007338532482
|
[7] |
HYSLOP E J. Stomach contents analysis:a review of methods and their application[J]. J Fish Biol, 1980, 17(4): 411-429. doi: 10.1111/j.1095-8649.1980.tb02775.x
|
[8] |
XIA Y G, LI Y F, ZHU S Z, et al. Individual dietary specialization reduces intraspecific competition, rather than feeding activity, in black Amur bream (Megalobrama terminalis)[J]. Sci Rep, 2020, 10(1): 17961. doi: 10.1038/s41598-020-74997-8
|
[9] |
姚娜, 刘洁雅, 马良, 等. 塔里木河上游隆额高原鳅与长身高原鳅的生物学特征[J]. 贵州农业科学, 2018, 46(4): 82-86. doi: 10.3969/j.issn.1001-3601.2018.04.019
|
[10] |
谢春刚, 周宗光, 阿布都吾甫尔·依提, 等. 帕米尔高原典型鱼类长身高原鳅人工繁殖初步研究[J]. 中国水产, 2018(7): 100-101.
|
[11] |
马本贺, 王海华, 徐先栋, 等. 大刺鳅消化道结构及食性研究[J]. 渔业科学进展, 2022, 43(3): 56-63.
|
[12] |
刘洁雅. 西藏巨须裂腹鱼个体生物学和种群动态研究[D]. 阿拉尔: 塔里木大学, 2016: 33.
|
[13] |
鄢思利, 郭延蜀, 杨骏, 等. 粗唇高原鳅生物学研究[J]. 水产科学, 2015, 34(8): 506-509.
|
[14] |
BECKMANN C L, MITCHELL J G, STONE D A J, et al. A controlled feeding experiment investigating the effects of a dietary switch on muscle and liver fatty acid profiles in Port Jackson sharks Heterodontus portusjacksoni[J]. J Exp Mar Biol Ecol, 2013, 448: 10-18. doi: 10.1016/j.jembe.2013.06.009
|
[15] |
崔莹. 基于稳定同位素和脂肪酸组成的中国近海生态系统物质流动研究[D]. 上海: 华东师范大学, 2012: 17-26.
|
[16] |
PETERSON B J, FRY B. Stable isotopes in ecosystem studies[J]. Annu Rev Ecol Evol S, 1987, 18(1): 293-320. doi: 10.1146/annurev.es.18.110187.001453
|
[17] |
POST D M. Using stable isotopes to estimate trophic position: models, methods, and assumptions[J]. Ecology, 2002, 83(3): 703-718. doi: 10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
|
[18] |
VANDER ZANDEN M J, Rasmussen J B. Primary consumer δ13C and δ15N and the trophic position of aquatic consumers[J]. Ecology, 1999: 1395-1404.
|
[19] |
赵贺, 赵年桦, 李丽, 等. 新疆克孜勒河5 种土著鱼食性分析[J]. 中国水产科学, 2022, 29(10): 1461-1474. doi: 10.12264/JFSC2022-0138
|
[20] |
LAYMAN C A, ARRINGTON D A, MONTAÑA C G, et al. Can stable isotope ratios provide for community-wide measures of trophic structure?[J]. Ecology, 2007, 88(1): 42-48. doi: 10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2
|
[21] |
JACKSON A L, INGER R, PARNELL A C, et al. Comparing isotopic niche widths among and within communities: SIBER-Stable iotope bayesian ellipses in R[J]. J Anim Ecol, 2011, 80(3): 595-602. doi: 10.1111/j.1365-2656.2011.01806.x
|
[22] |
SARGENT J R, TOCHER D R, BELL J G. The lipids[J]. Fish Nutr, 2003: 181-257.
|
[23] |
武鹏飞, 耿龙武, 姜海峰, 等. 达里湖高原鳅肌肉营养成分分析与品质评价[J]. 水产学杂志, 2017, 30(1): 19-25. doi: 10.3969/j.issn.1005-3832.2017.01.004
|
[24] |
赵云龙, 郭志欣, 尹智博, 等. 野生花鳅和养殖花鳅营养价值的比较与分析[J]. 黑龙江畜牧兽医, 2021(20): 132-136.
|
[25] |
全书月, 李忠, 梁宏伟, 等. 长丰鲢卵巢发育后期的肝脏、卵巢营养成分及脂肪酸变化[J]. 淡水渔业, 2018, 48(5): 79-85. doi: 10.3969/j.issn.1000-6907.2018.05.013
|
[26] |
蔡颂文, 韩婷, 韩玉麒, 等. 富含缓释淀粉高单不饱和脂肪酸型肠内营养制剂对超重的2 型糖尿病病人血糖和血脂的影响[J]. 肠外与肠内营养, 2014, 21(3): 138-141.
|
[27] |
LEE R F, HAGEN W, KATTNER G. Lipid storage in marine zooplankton[J]. Mar Ecol Prog Ser, 2006, 307: 273-306. doi: 10.3354/meps307273
|
[28] |
吐尔逊, 任波, 张人铭, 等. 阿克苏河长身高原鳅Triplophysa (Triplophysa) teunis (Day)生物学研究[J]. 水产学杂志, 2005(2): 65-69, 100. doi: 10.3969/j.issn.1005-3832.2005.02.012
|
[29] |
赵振方, 胡贯宇, 陈新军, 等. 秘鲁外海茎柔鱼脂肪酸组成的月间差异研究[J]. 海洋湖沼通报, 2022, 44(4): 98-105.
|
[30] |
RAJENDRAN N, SUWA Y, URUSHIGAWA Y. Distribution of phospholipid ester-linked fatty acid biomarkers for bacteria in the sediment of Ise Bay, Japan[J]. Mar Chem, 1993, 42(1): 39-56. doi: 10.1016/0304-4203(93)90248-M
|
[31] |
EVERY S L, PETHYBRIDGE H R, CROOK D A, et al. Comparison of fin and muscle tissues for analysis of signature fatty acids in tropical euryhaline sharks[J]. J Exp Mar Biol Ecol, 2016, 479: 46-53. doi: 10.1016/j.jembe.2016.02.011
|
[32] |
FALK-PETERSEN S, SARGENT J R, TANDE K S. Lipid composition of zooplankton in relation to the sub-arctic food web[J]. Polar Biol, 1987, 8(2): 115-120. doi: 10.1007/BF00297065
|
[33] |
STOWASSER G, POND D W, COLLINS M A. Using fatty acid analysis to elucidate the feeding habits of Southern Ocean mesopelagic fish[J]. Mar Biol, 2009, 156: 2289-2302. doi: 10.1007/s00227-009-1256-4
|
[34] |
FUKUDA Y, NAGANUMA T. Potential dietary effects on the fatty acid composition of the common jellyfish Aurelia aurita[J]. Mar Biol, 2001, 138(5): 1029-1035. doi: 10.1007/s002270000512
|
[35] |
李莉, 张硕, 吴立珍. 脊尾白虾脂肪酸组成特点及其食性分析[J]. 大连海洋大学学报, 2019, 34(4): 552-557.
|
[36] |
JOHNS R B, NICHOLS P D, PERRY G J. Fatty acid composition of ten marine algae from Australian waters[J]. Phytochemistry, 1979, 18(5): 799-802. doi: 10.1016/0031-9422(79)80018-7
|
[37] |
PARRISH C C, ABRAJANO T A, BUDGE S M, et al. Lipid and phenolic biomarkers in marine ecosystems: analysis and applications[J]. Mar chem, 2000: 193-223.
|
[38] |
李荷芳, 周汉秋. 海洋微藻脂肪酸组成的比较研究[J]. 海洋与湖沼, 1999, 30(1): 34-40. doi: 10.3321/j.issn:0029-814X.1999.01.006
|
[39] |
VISO A C, MARTY J C. Fatty acids from 28 marine microalgae[J]. Phytochemistry, 1993, 34(6): 1521-1533. doi: 10.1016/S0031-9422(00)90839-2
|
[40] |
POND D W, BELL M V, HARRIS R P, et al. Microplanktonic polyunsaturated fatty acid markers: a mesocosm trial[J]. Estuar Coast Shelf S, 1998, 46(2): 61-67. doi: 10.1006/ecss.1998.0334
|
[41] |
ROSSI S, YOUNGBLUTH M J, JACOBY C A, et al. Fatty acid trophic markers and trophic links among seston, crustacean zooplankton and the siphonophore Nanomia cara in Georges Basin and Oceanographer Canyon[J]. Sci Mar, 2008, 72(2): 403-416.
|
[42] |
王开立, 龚玉艳, 陈作志, 等. 基于稳定同位素技术的南海北部蓝圆鲹的营养生态位[J]. 生态学杂志, 2022, 41(4): 724-731.
|
[43] |
LIU B L, XU W, CHEN X J, et al. Ontogenetic shifts in trophic geography of jumbo squid, Dosidicus gigas, inferred from stable isotopes in eye lens[J]. Fish Res, 2020, 226: 105507. doi: 10.1016/j.fishres.2020.105507
|
[44] |
HURLBERT S H. The measurement of niche overlap and some relatives[J]. Ecology, 1978, 59(1): 67-77. doi: 10.2307/1936632
|
[45] |
王凤, 鞠瑞亭, 李跃忠, 等. 生态位概念及其在昆虫生态学中的应用[J]. 生态学杂志, 2006(10): 1280-1284. doi: 10.3321/j.issn:1000-4890.2006.10.024
|
[46] |
HOBSON K A, SINCLAIR E H, YORK A E, et al. Retrospective isotopic analyses of Steller sea lion tooth annuli and seabird feathers: a cross-taxa approach to investigating regime and dietary shifts in the Gulf of Alaska[J]. Mar Mammal Sci, 2004, 20(3): 621-638. doi: 10.1111/j.1748-7692.2004.tb01183.x
|
[47] |
张嘉琦, 刘必林. 基于碳氮稳定同位素技术的西北太平洋富山武装乌贼和相拟钩腕乌贼生态位变化研究[J]. 大连海洋大学学报, 2023, 38(3): 515-523.
|
[48] |
韩军军, 陈朋, 祁峰, 等. 新疆渭干河流域鱼类资源现状[J]. 水产科学, 2022, 41(1): 92-101.
|
[49] |
许莉莉, 薛莹, 徐宾铎, 等. 海州湾大泷六线鱼摄食生态研究[J]. 中国水产科学, 2018, 25(3): 608-620.
|
[50] |
HORINOUCHI M, SANO M. Food habits of fishes in a Zostera marina bed at aburatsubo, central japan[J]. Ichthyol Res, 2000, 47(2): 163-173. doi: 10.1007/BF02684237
|
[51] |
BUDGE S M, IVERSON S J, KOOPMAN H N. Studying trophic ecology in marine ecosystems using fatty acids: a primer on analysis and interpretation[J]. Mar Mammal Sci, 2006, 22(4): 759-801. doi: 10.1111/j.1748-7692.2006.00079.x
|
[52] |
KRITZBERG E S, COLE J J, PACE M L, et al. Autochthonous versus allochthonous carbon sources of bacteria: results from whole-lake 13C addition experiments[J]. Limnol Oceanogr, 2004, 49(2): 588-596. doi: 10.4319/lo.2004.49.2.0588
|
[53] |
BOUTTON T W. Stable carbon isotope ratios of natural materials: II. Atmospheric, terrestrial, marine, and freshwater environments[J]. Carbon Isot Tech, 1991(1): 173-185.
|
[54] |
BOUILLON S, MOHAN P C, SREENIVAS N, et al. Sources of suspended organic matter and selective feeding by zooplankton in an estuarine mangrove ecosystem as traced by stable isotopes[J]. Mar Ecol Prog Ser, 2000, 208(1): 79-92.
|