ZHU Shuli, CHEN Weitao, WU Zhi, XIA Yuguo, YANG Jiping, LI Yuefei, LI Jie. Preliminary investigation of fish diversity in middle and lower reaches of Pearl River based on environmental DNA technology[J]. South China Fisheries Science, 2024, 20(1): 120-129. DOI: 10.12131/20230111
Citation: ZHU Shuli, CHEN Weitao, WU Zhi, XIA Yuguo, YANG Jiping, LI Yuefei, LI Jie. Preliminary investigation of fish diversity in middle and lower reaches of Pearl River based on environmental DNA technology[J]. South China Fisheries Science, 2024, 20(1): 120-129. DOI: 10.12131/20230111

Preliminary investigation of fish diversity in middle and lower reaches of Pearl River based on environmental DNA technology

More Information
  • Received Date: June 06, 2023
  • Revised Date: September 18, 2023
  • Accepted Date: October 26, 2023
  • Available Online: November 09, 2023
  • To explore new ways for observing and protecting fish species diversity in the middle and lower reaches of the Pearl River, we used eDNA technology to detect fish species diversity in that river section. Six sampling localities, namely Guiping, Tengxian, Fengkai, Deqing, Zhaoqing and Jiujiang, were set up in February 2023. The fish diversity was detected by eDNA metabarcoding analysis that includes water collection, water filtration, eDNA extraction, genetic marker amplification, sequencing and bioinformatic analyses. The results show that 30 fish species had been detected in 6 sampling sites, belonging to 4 orders, 10 families and 27 genera, in which 26 were native species and 4 were non-native species. Compared with traditional survey reports, two new species (Botia pulchra and Oceochromis zillii) were detected. Rhinogobius giurinus, Pelteobagrus vachellii, Hypophthalmichthys molitrix, O. nilotica, O. zillii, Rasbora steineri and Cyprinus carpio were found at each sampling site, indicating that these species are the dominant species in the survey area. According to Shannon index and Simpson index, the fish diversity was highest in Jiujiang and Guiping, while lowest in Tengxian. As a new detection method, eDNA technology can efficiently investigate the fish biodiversity and distribution in the middle and lower reaches of the Pearl River. To sum up, eDNA technology can be combined with traditional fish resources monitoring methods to provide more comprehensive data information on fish species diversity.

  • [1]
    CHEN Y S, QU X, XIONG F Y, et al. Challenges to saving China's freshwater biodiversity: fishery exploitation and landscape pressures[J]. Ambio, 2020, 49(4): 926-938. doi: 10.1007/s13280-019-01246-2
    [2]
    HE Y F, WANG J W, LEK S, et al. Structure of endemic fish assemblages in the upper Yangtze River Basin[J]. River Res Appl, 2011, 27(1): 59-75. doi: 10.1002/rra.1339
    [3]
    REID A J, CARLSON A K, CREED I F, et al. Emerging threats and persistent conservation challenges for freshwater biodiversity[J]. Biol Rev, 2019, 94(3): 849-873. doi: 10.1111/brv.12480
    [4]
    COULTHARD S, JOHNSON D, MCGREGOR J A. Poverty, sustainability and human wellbeing: a social wellbeing approach to the global fisheries crisis[J]. Global Environ Chang, 2011, 21(2): 453-463. doi: 10.1016/j.gloenvcha.2011.01.003
    [5]
    DUDGEON D. Multiple threats imperil freshwater biodiversity in the Anthropocene[J]. Curr Biol, 2019, 29(19): 960-967. doi: 10.1016/j.cub.2019.08.002
    [6]
    BONAR S A, MERCADO-SILVA N, HUBERT W A, et al. Standard methods for sampling freshwater fishes: opportunities for international collaboration[J]. Fisheries, 2017, 42(3): 150-156. doi: 10.1080/03632415.2017.1276352
    [7]
    YAO M, ZHANG S, LU Q, et al. Fishing for fish environmental DNA: ecological applications, methodological considerations, surveying designs, and ways forward[J]. Mol Ecol, 2022, 31(20): 5132-5164. doi: 10.1111/mec.16659
    [8]
    秦传新, 左涛, 于刚, 等. 环境DNA在水生生态系统生物量评估中的研究进展[J]. 南方水产科学, 2020, 16(5): 123-128. doi: 10.12131/20190256
    [9]
    舒璐, 林佳艳, 徐源, 等. 基于环境DNA宏条形码的洱海鱼类多样性研究[J]. 水生生物学报, 2020, 44(5): 1080-1086.
    [10]
    DEINER K, BIK H M, MACHLER E, et al. Environmental DNA metabarcoding: transforming how we survey animal and plant communities[J]. Mol Ecol, 2017, 26(21): 5872-5895. doi: 10.1111/mec.14350
    [11]
    ALICE V, PIERRE T, CLAUDE M, et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding[J]. Mol Ecol, 2015, 25(4): 929-942.
    [12]
    QUENTIN M, LYNSEY R H, MICHAEL S, et al. The multiple states of environmental DNA and what is known about their persistence in aquatic environments[J]. Environ Sci Technol, 2022, 56(9): 5322-5333. doi: 10.1021/acs.est.1c07638
    [13]
    PAWLOWSKI J, KELLY-QUINN M, ALTERMATT F, et al. The future of biotic indices in the ecogenomic era: integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems[J]. Sci Total Environ, 2018, 637/638(1): 1295-1310.
    [14]
    TABERLET P, COISSAC E, HAJIBABAEI M, et al. Environmental DNA[J]. Mol Ecol, 2012, 21(8): 1789-1793. doi: 10.1111/j.1365-294X.2012.05542.x
    [15]
    SHU L, LUDWIG A, PENG Z G. Standards for methods utilizing environmental DNA for detection of fish species[J]. Genes-Basel, 2020, 11(3): 296. doi: 10.3390/genes11030296
    [16]
    BOHMANN K, EVANS A, GILBERT M T P, et al. Environmental DNA for wildlife biology and biodiversity monitoring[J]. Trends Ecol Evol, 2014, 29(6): 358-367. doi: 10.1016/j.tree.2014.04.003
    [17]
    TAKAHARA T, MINAMOTO T, YAMANAKA H, et al. Estimation of fish biomass using environmental DNA[J]. PLoS One, 2012, 7(4): e35868. doi: 10.1371/journal.pone.0035868
    [18]
    THOMSEN P F, KIELGAST J, IVERSEN L L, et al. Detection of a diverse marine fish fauna using environmental DNA from seawater samples[J]. PLoS One, 2012, 7(8): e41732. doi: 10.1371/journal.pone.0041732
    [19]
    BELLE C C, STOECKLE B C, GEIST J. Taxonomic and geographical representation of freshwater environmental DNA research in aquatic conservation[J]. Aquat Conserv, 2019, 29(11): 1996-2009. doi: 10.1002/aqc.3208
    [20]
    赵明, 赵梦迪, 马春艳, 等. 环境DNA在水域生态中的研究进展[J]. 中国水产科学, 2018, 25(4): 714-720.
    [21]
    TSUJI S, TAKAHARA T, DOI H, et al. The detection of aquatic macroorganisms using environmental DNA analysis: a review of methods for collection, extraction, and detection[J]. Environ DNA, 2019, 1(2): 99-108. doi: 10.1002/edn3.21
    [22]
    《中国河湖大典》编纂委员会. 中国河湖大典 珠江卷[M]. 北京: 中国水利水电出版社, 2013: 1-10.
    [23]
    张迎秋, 黄稻田, 李新辉, 等. 西江鱼类群落结构和环境影响分析[J]. 南方水产科学, 2020, 16(1): 42-52.
    [24]
    XING Y C, ZHANG C G, FAN E Y, et al. Freshwater fishes of China: species richness, endemism, threatened species and conservation[J]. Divers Distrib, 2016, 22(3): 358-370. doi: 10.1111/ddi.12399
    [25]
    李捷, 李新辉, 贾晓平, 等. 西江鱼类群落多样性及其演变[J]. 中国水产科学, 2010, 17(2): 298-311.
    [26]
    李跃飞, 李新辉, 杨计平, 等. 珠江干流长洲水利枢纽蓄水后珠江鳡鱼 (Elopichthys bambusa) 早期资源现状[J]. 湖泊科学, 2015, 27(5): 917-924.
    [27]
    帅方敏, 李新辉, 刘乾甫, 等. 珠江水系鱼类群落多样性空间分布格局[J]. 生态学报, 2017, 37(9): 3182-3192.
    [28]
    盛强, 茹辉军, 李云峰, 等. 中国国家级水产种质资源保护区分布格局现状与分析[J]. 水产学报, 2019, 43(1): 62-80.
    [29]
    杨君兴, 潘晓赋, 陈小勇, 等. 中国淡水鱼类人工增殖放流现状[J]. 动物学研究, 2013, 34(4): 267-280.
    [30]
    OWEN S W, CREU P, MAGDALENA G, et al. DNA metabarcoding of littoral hard-bottom communities: high diversity and database gaps revealed by two molecular markers[J]. PeerJ, 2018, 6: e4705. doi: 10.7717/peerj.4705
    [31]
    CHEN W T, LI C, YANG J P, et al. Temporal species-level composition of larvae resources in the lower Pearl River drainage and implications for species' reproductive cycles[J]. Gene, 2021, 776: 145351. doi: 10.1016/j.gene.2020.145351
    [32]
    王梦, 杨鑫, 王维, 等. 基于eDNA技术的长江上游珍稀特有鱼类国家级自然保护区重庆段鱼类多样性研究[J]. 水生生物学报, 2022, 46(1): 2-16.
    [33]
    郑慈英. 珠江鱼类志[M]. 北京: 科学出版社, 1989: 77-367.
    [34]
    张春光, 赵亚辉. 中国内陆鱼类物种与分布[M]. 北京: 科学出版社, 2016: 210-213.
    [35]
    DIXON P. VEGAN, a package of R functions for community ecology[J]. J Veg Sci, 2003, 14(6): 927-930. doi: 10.1111/j.1654-1103.2003.tb02228.x
    [36]
    李捷, 李新辉, 谭细畅, 等. 广东肇庆西江珍稀鱼类省级自然保护区鱼类多样性[J]. 湖泊科学, 2009, 21(4): 556-562. doi: 10.3321/j.issn:1003-5427.2009.04.015
    [37]
    李跃飞, 李新辉, 谭细畅, 等. 西江肇庆江段渔业资源现状及其变化[J]. 水利渔业, 2008, 28(2): 80-83.
    [38]
    HEBERT P D, CYWINSKA A, BALL S L, et al. Biological identifications through DNA barcodes[J]. Proc R Soc B, 2003, 270(1512): 313-321. doi: 10.1098/rspb.2002.2218
    [39]
    蒋佩文, 李敏, 张帅, 等. 基于线粒体COI和12S rDNA基因构建珠江河口鱼类DNA宏条形码数据库[J]. 南方水产科学, 2022, 18(3): 13-21.
    [40]
    郜星晨, 姜伟. 三峡库区常见鱼类DNA条形码本地BLAST数据库的构建和应用[J]. 基因组学与应用生物学, 2021, 40(5/6): 1952-1960.
    [41]
    乐佩琦. 中国动物志. 硬骨鱼纲 鲤形目 中卷[M]. 北京: 科学出版社, 2000: 1-16.
    [42]
    刘亚秋, 李新辉, 李跃飞, 等. 西江广东鲂 (Megalobrama terminalis) 繁殖生物学及繁殖策略[J]. 湖泊科学, 2021, 33(1): 232-241.
    [43]
    GOUTTE A, MOLBERT N, GUÉRIN S, et al. Monitoring freshwater fish communities in large rivers using environmental DNA metabarcoding and a long-term electrofishing survey[J]. J Fish Biol, 2020, 97(2): 444-452. doi: 10.1111/jfb.14383
    [44]
    LAMY T, PITZ K J, CHAVEZ F P, et al. Environmental DNA reveals the fine-grained and hierarchical spatial structure of kelp forest fish communities[J]. Sci Rep-UK, 2021, 11(1): 14439. doi: 10.1038/s41598-021-93859-5
    [45]
    CIVADE R, DEJEAN T, VALENTINI A, et al. Spatial representativeness of environmental DNA metabarcoding signal for fish biodiversity assessment in a natural freshwater system[J]. PLoS One, 2016, 11(6): e0157366.
    [46]
    RUPERT A C, JUDITH B, OWEN S W, et al. Non-specific amplification compromises environmental DNA metabarcoding with COI[J]. Methods Ecol Evol, 2019, 10(11): 1985-2001. doi: 10.1111/2041-210X.13276
    [47]
    刘军, 赵良杰, 凡迎春, 等. 鱼类环境DNA研究中通用引物的筛选验证[J]. 淡水渔业, 2016, 46(1): 9-17.
    [48]
    MACKENZIE D I, NICHOLS J D, LACHMAN G B, et al. Estimating site occupancy rates when detection probabilities are less than one[J]. Ecology, 2002, 83(8): 2248-2255. doi: 10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2
    [49]
    GU W D, SWIHART R K. Absent or undetected? Effects of non-detection of species occurrence on wildlife–habitat models[J]. Biol Conserv, 2004, 116(2): 195-203. doi: 10.1016/S0006-3207(03)00190-3
    [50]
    GOTELLI N J, COLWELL R K. Estimating species richness[M]//MAGURRAN A E, McGILL B J. Frontiers in measuring biodiversity. New York: Oxford University Press, 2011: 39-54.
    [51]
    CRISTESCU M E, HEBERT P D N. Uses and misuses of environmental DNA in biodiversity science and conservation[J]. Annu Rev Ecol Evol S, 2018, 49(1): 209-230. doi: 10.1146/annurev-ecolsys-110617-062306
    [52]
    ZOU K S, CHEN J W, RUAN H T, et al. eDNA metabarcoding as a promising conservation tool for monitoring fish diversity in a coastal wetland of the Pearl River Estuary compared to bottom trawling[J]. Sci Total Environ, 2020, 702: 134704. doi: 10.1016/j.scitotenv.2019.134704
    [53]
    ZHANG S N, ZHAO J D, YAO M. A comprehensive and comparative evaluation of primers for metabarcoding eDNA from fish[J]. Methods Ecol Evol, 2020, 11(12): 1609-1625. doi: 10.1111/2041-210X.13485
    [54]
    SHIN-ICHIRO O, HIDEYUKI D, KEI M, et al. Environmental DNA metabarcoding for biodiversity monitoring of a highly diverse tropical fish community in a coral reef lagoon: estimation of species richness and detection of habitat segregation[J]. Environ DNA, 2021, 3(1): 55-69. doi: 10.1002/edn3.132
    [55]
    熊美华, 杨志, 胡兴坤, 等. 长江中游监利江段鱼类群落结构研究[J]. 长江流域资源与环境, 2019, 28(9): 2109-2118.
    [56]
    武智, 李跃飞, 朱书礼, 等. 基于渔业声学调查的珠江东塔产卵场鱼类栖息地适宜性研究[J]. 南方水产科学, 2023, 19(3): 11-18.
    [57]
    蒋佩文, 李敏, 张帅, 等. 基于环境DNA宏条码和底拖网的珠江河口鱼类多样性[J]. 水生生物学报, 2022, 46(11): 1701-1711.
    [58]
    谭细畅, 李新辉, 李跃飞, 等. 尼罗罗非鱼早期发育形态及其在珠江水系的空间分布[J]. 生物安全学报, 2012, 21(4): 295-299.
    [59]
    顾党恩, 牟希东, 罗渡, 等. 广东省主要水系罗非鱼的建群状况[J]. 生物安全学报, 2012, 21(4): 277-282.
    [60]
    TONY D, ALICE V, ANTOINE D, et al. Persistence of environmental DNA in freshwater ecosystems[J]. PLoS One, 2012, 6(8): e23398.
    [61]
    FICETOLA G F, MIAUD C, POMPANON F, et al. Species detection using environmental DNA from water samples[J]. Biol Lett, 2008, 4(4): 423-425. doi: 10.1098/rsbl.2008.0118
    [62]
    HOWALD G, DONLAN C J, GALVAN J P, et al. Invasive rodent eradication on islands[J]. Conserv Biol, 2007, 21(5): 1258-1268. doi: 10.1111/j.1523-1739.2007.00755.x
    [63]
    BOOTHROYD M, MANDRAK N E, FOX M, et al. Environmental DNA (eDNA) detection and habitat occupancy of threatened spotted gar (Lepisosteus oculatus)[J]. Aquat Conserv, 2016, 26(6): 1107-1119. doi: 10.1002/aqc.2617
    [64]
    JANOSIK A M, JOHNSTON C E. Environmental DNA as an effective tool for detection of imperiled fishes[J]. Environ Biol Fish, 2015, 98(8): 1889-1893. doi: 10.1007/s10641-015-0405-5
    [65]
    甘西, 蓝家湖, 吴铁军, 等. 中国南方淡水鱼类原色图鉴[M]. 郑州: 河南科学技术出版社, 2017: 75.
    [66]
    VALDIVIA-CARRILLO T, ROCHA-OLIVARES A, REYES-BONILLA H, et al. Integrating eDNA metabarcoding and simultaneous underwater visual surveys to describe complex fish communities in a marine biodiversity hotspot[J]. Mol Ecol Resour, 2021, 21(5): 1558-1574. doi: 10.1111/1755-0998.13375
    [67]
    CILLEROS K, VALENTINI A, ALLARD L, et al. Unlocking biodiversity and conservation studies in high-diversity environments using environmental DNA (eDNA): a test with Guianese freshwater fishes[J]. Mol Ecol Resour, 2019, 19(1): 27-46. doi: 10.1111/1755-0998.12900
  • Related Articles

    [1]LUO Jing, LI Min, ZHANG Ying, LIU Yan, GUAN Zhiqiang. Effect of different drying methods on volatile components of tilapia fillets analyzed by electronic nose combined with GC-MS[J]. South China Fisheries Science, 2022, 18(1): 135-143. DOI: 10.12131/20210098
    [2]LI Laihao, SUN Bolun, ZHAO Donghao. Research progress in detection and preparation methods for tetrodotoxin[J]. South China Fisheries Science, 2018, 14(3): 126-132. DOI: 10.3969/j.issn.2095-0780.2018.03.016
    [3]CHEN Kang, DAI Zhiyuan, SHEN Qing, HUANG Yaowen. Extraction of phospholipid from Euphausia superba by response surface method and determination of phospholipid molecular species[J]. South China Fisheries Science, 2017, 13(3): 104-112. DOI: 10.3969/j.issn.2095-0780.2017.03.014
    [4]WANG Zhengbin, LIU Yongtao, AI Xiaohui, YANG Tao, LIU Tianqiang. Microbiological inhibition method for determination of colistin residues in muscles of aquatic products[J]. South China Fisheries Science, 2016, 12(3): 98-105. DOI: 10.3969/j.issn.2095-0780.2016.03.013
    [5]WEI Ya, ZHAO Yongqiang, HAO Shuxian, CEN Jianwei, HUANG Hui, LI Laihao. Comparison of carbazole method and phloroglucinol method for chondroitin sulfate determination[J]. South China Fisheries Science, 2012, 8(6): 65-71. DOI: 10.3969/j.issn.2095-0780.2012.06.010
    [6]ZHU Shichao, QIAN Zhuozhen, WU Chengye. Determination of 7 macrolide antibiotic residues in aquatic products by HPLC-MS/MS[J]. South China Fisheries Science, 2012, 8(1): 54-60. DOI: 10.3969/j.issn.2095-0780.2012.01.009
    [7]HUANG Chunli, HUANG He, LIU Wenxia, GAO Ping, HUANG Guofang, LI Zhiqing, CHENG Hong, LUO Lin. Research progress on residual toxicity and detection methods of melamine[J]. South China Fisheries Science, 2011, 7(3): 76-80. DOI: 10.3969/j.issn.2095-0780.2011.03.014
    [8]CEN Jianwei, LI Laihao, YANG Xianqing, WEI Ya, ZHAO Suhui, ZHOU Wanjun, SHI Hong. Comparison of four determination methods of Alum content in jellyfish product[J]. South China Fisheries Science, 2010, 6(3): 7-11. DOI: 10.3969/j.issn.1673-2227.2010.03.002
    [9]YANG Qibin, LI Xiaolan, SUN Miaomiao, WEN Weigeng, HUANG Jianhua. Methods of testing vitality of postlarvae of Penaeus monodon[J]. South China Fisheries Science, 2010, 6(1): 12-18. DOI: 10.3969/j.issn.1673-2227.2010.01.003
    [10]MA Haixia, LI Laihao, YANG Xianqing, WU Yanyan, ZHOU Wanjun, DIAO Shiqiang, CHEN Shengjun. Spectrophotometric determination of formaldehyde in aquatic products[J]. South China Fisheries Science, 2008, 4(6): 26-32.
  • Other Related Supplements

  • Cited by

    Periodical cited type(3)

    1. 王会虎,任超,郑国栋,邹曙明. 团头鲂选育家系亲子鉴定方法的建立. 水生生物学报. 2024(08): 1378-1384 .
    2. 胡玉婷,汪焕,段国庆,周华兴,凌俊,江河,潘庭双,杨敏,李彤. 瓦氏黄颡鱼养殖群体的微卫星遗传多样性. 安徽农业大学学报. 2024(05): 802-807 .
    3. 胡芹宝,张荟,孙渭博,吕铭,高明. 微卫星标记的多重PCR方法应用于BALB/c小鼠遗传质量检测的可行性分析. 微生物学免疫学进展. 2024(06): 20-26 .

    Other cited types(0)

Catalog

    Article views (202) PDF downloads (59) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return