Citation: | OUYANG Yan, PAN Jinmin, XIAN Lin, LIU Baosuo, GUO Huayang, Zhu Tengfei, ZHANG Nan, ZHU Kecheng, ZHANG Dianchang. Chromosome-level genome and characteristic analysis of Platax teira[J]. South China Fisheries Science, 2024, 20(6): 31-42. DOI: 10.12131/20240112 |
Platax teira has the characteristics of fast growth rate, delicious meat and high nutritional content, and its strange appearance, especially for young fish, makes it an ornamental fish, being one of the important potential fishes for the cage culture development in the South China Sea. Due to the lack of genomic information, most of the functional genes of P. teira have not been explored, which has become an important factor of restricting its genetic breeding. We utilized triple sequencing technology and assembly to obtain a high-quality genome map of P. teira on chromosome level, and obtained the basic biological information of P. teira genome sequence through genome annotation. The results show that the genome size of P. teira was 697.98 Mb, assembling into 24 chromosomes with an assembly rate of 99.26%. P. teira genome contained 177.79 Mb of repetitive sequences, accounting for 25.47% of the total genome and encoding 22 851 genes. Comparative genomic analysis with 11 other fish species reveals that P. teira shared the closest relationship with Cheilinus undulatus, and the differentiation time was about 82.89 Ma. Genes under positive selection in P. teira were enriched in pathways related to ion channels and cardiac function, while the expanded gene families were enriched in pathways related to olfactory transmission and nitrogen metabolism, which reveals its survival, adaptation basis and ecological adaptation strategies in specific environment.
[1] |
BRAY R A, CRIBB T H. Lepocreadiidae (Digenea) from the batfish of the genus Platax Cuvier (Teleostei: Ephippidae) from the southern Great Barrier Reef, Queensland, Australia[J]. Syst Parasitol, 2003, 55(1): 1-9. doi: 10.1023/A:1023974022432
|
[2] |
MARIMUTHU N, WILSON J J, KUMARAGURU A K. Teira batrish, Platax teira (Forsskal, 1775) in Pudhumadam coastal waters, drifted due to the tsunami of 26 December 2004[J]. Current Sci, 2005, 89(8): 1310-1312.
|
[3] |
GOLANI D, SONIN O, EDELIST D. Second records of the Lessepsian fish migrants Priacanthus sagittarius and Platax teira and distribution extension of Tylerius spinosissimus in the Mediterranean[J]. Aquat Invasions, 2011, 6(S1): S7-S11.
|
[4] |
刘明鉴, 郭华阳, 高杰, 等. 尖翅燕鱼早期胚胎发育及仔稚鱼形态观察[J]. 南方水产科学, 2022, 18(4): 103-111. doi: 10.12131/20210251
|
[5] |
BILECENOGLU M, KAYA M. A new alien fish in the Mediterranean Sea-Platax teira (Forsskål, 1775) (Osteichthyes: Ephippidae)[J]. Aquat Invasions, 2006, 1(2): 80-83. doi: 10.3391/ai.2006.1.2.5
|
[6] |
LEIS J M, HAY A C, HOWARTH G J. Ontogeny of in situ behaviours relevant to dispersal and population connectivity in larvae of coral-reef fishes[J]. Mar Ecol Prog Ser, 2009, 379: 163-179. doi: 10.3354/meps07904
|
[7] |
LIU M J, GAO J, GUO H Y, et al. Transcriptomics reveal the effects of breeding temperature on growth and metabolism in the early developmental stage of Platax teira[J]. Biology, 2023, 12(9): 1161. doi: 10.3390/biology12091161
|
[8] |
陈松林, 徐文腾, 刘洋. 鱼类基因组研究十年回顾与展望[J]. 水产学报, 2019, 43(1): 1-14.
|
[9] |
APARICIO S, CHAPMAN J, STUPKA E, et al. Whole-genomeshotgun assembly and analysis of the genome of Fugu rubripes[J]. Science, 2002, 297(5585): 1301-1310.
|
[10] |
LIU D, WANG X Y, GUO H Y, et al. Chromosome-level genome assembly of the endangered humphead wrasse Cheilinus undulatus: insight into the expansion of opsin genes in fishes[J]. Mol Ecol Resour, 2021, 21(7): 2388-2406.
|
[11] |
ZHENG S Q, SHAO F, TAO W J, et al. Chromosome-level assembly of southern catfish (Silurus meridionalis) provides insights into visual adaptation to nocturnal and benthic lifestyles[J]. Mol Ecol Resour, 2021, 21(5): 1575-1592. doi: 10.1111/1755-0998.13338
|
[12] |
廖静. 人工养殖尖翅燕鱼性价比高[J]. 海洋与渔业, 2018(11): 62-63.
|
[13] |
LIU B, GUO H Y, ZHU K C, et al. Nutritional compositions in different parts of muscle in the longfin batfish, Platax teira (Forsskål, 1775)[J]. J Appl Anim Res, 2019, 47(1): 403-407. doi: 10.1080/09712119.2019.1649680
|
[14] |
CHEN S F, ZHOU Y Q, CHEN Y R, et al. fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): i884-i890. doi: 10.1093/bioinformatics/bty560
|
[15] |
ROBERTS R J, CARNEIRO M O, SCHATZ M C. The advantages of SMRT sequencing[J]. Genome Biol, 2013, 14(7): 405. doi: 10.1186/gb-2013-14-6-405
|
[16] |
HU J, WANG Z, SUN Z Y, et al. NextDenovo: an efficient error correction and accurate assembly tool for noisy long reads[J]. Genome Biol, 2024, 25(1): 107. doi: 10.1186/s13059-024-03252-4
|
[17] |
HU J, FAN J P, SUN Z Y, et al. NextPolish: a fast and efficient genome polishing tool for long-read assembly[J]. Bioinformatics, 2020, 36(7): 2253-2255. doi: 10.1093/bioinformatics/btz891
|
[18] |
SEPPEY M, MANNI M, ZDOBNOV E M. BUSCO: assessing genome assembly and annotation completeness[J]. Methods Mol Biol, 2019, 1962: 227-245.
|
[19] |
FLYNN J M, HUBLEY R, GOUBERT C, et al. RepeatModeler2 for automated genomic discovery of transposable element families[J]. PNAS, 2020, 117(17): 9451-9457. doi: 10.1073/pnas.1921046117
|
[20] |
HAAS B J, SALZBERG S L, ZHU W, et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments[J]. Genome Biol, 2008, 9(1): R7. doi: 10.1186/gb-2008-9-1-r7
|
[21] |
BIRNEY E, CLAMP M, DURBIN R. GeneWise and Genomewise[J]. Genome Res, 2004, 14(5): 988-995. doi: 10.1101/gr.1865504
|
[22] |
KIM D, LANGMEAD B, SALZBERG S L. HISAT: a fast spliced aligner with low memory requirements[J]. Nat Methods, 2015, 12(4): 357-360. doi: 10.1038/nmeth.3317
|
[23] |
PERTEA M, PERTEA G M, ANTONESCU C M, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads[J]. Nat Biotechnol, 2015, 33(3): 290-295. doi: 10.1038/nbt.3122
|
[24] |
STANKE M, DIEKHANS M, BAERTSCH R, et al. Using native and syntenically mapped cDNA alignments to improve de novo gene finding[J]. Bioinformatics, 2008, 24(5): 637-644. doi: 10.1093/bioinformatics/btn013
|
[25] |
EMMS D M, KELLY S. OrthoFinder: phylogenetic orthology inference for comparative genomics[J]. Genome Biol, 2019, 20(1): 238. doi: 10.1186/s13059-019-1832-y
|
[26] |
KATOH K, STANDLEY D M. MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability[J]. Mol Biol Evol, 2013, 30(4): 772-780. doi: 10.1093/molbev/mst010
|
[27] |
KUMAR S, SULESKI M, CRAIG J M, et al. TimeTree 5: an expanded resource for species divergence times[J]. Mol Biol Evol, 2022, 39(8): msac174. doi: 10.1093/molbev/msac174
|
[28] |
YANG Z H. PAML 4: phylogenetic analysis by maximum likelihood[J]. Mol Biol Evol, 2007, 24(8): 1586-1591. doi: 10.1093/molbev/msm088
|
[29] |
MENDES F K, VANDERPOOL D, FULTON B, et al. CAFE 5 models variation in evolutionary rates among gene families[J]. Bioinformatics, 2021, 36(22/23): 5516-5518.
|
[30] |
EDDY S R. Accelerated profile HMM searches[J]. PLoS Comput Biol, 2011, 7(10): e1002195. doi: 10.1371/journal.pcbi.1002195
|
[31] |
YU G C, WANG L G, HAN Y Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16(5): 284-287. doi: 10.1089/omi.2011.0118
|
[32] |
高杰, 郭华阳, 刘明鉴, 等. 尖翅燕鱼染色体核型分析[J]. 海洋渔业, 2022, 44(5): 535-542.
|
[33] |
OSHIUMI H , TSUJITA T , SHIDA K, et al. Prediction of the prototype of the human Toll-like receptor gene family from the pufferfish, Fugu rubripes, genome[J]. Immunogenetics, 2003, 54: 791-800.
|
[34] |
HU Y C, TAN R H, ZHU X, et al. Genome-wide identification, phylogeny and expressional profile of the Dmrt gene family in Chinese sturgeon (Acipenser sinensis)[J]. Sci Rep, 2024, 14(1): 4231. doi: 10.1038/s41598-024-54899-9
|
[35] |
ZHU K C, ZHANG N, LIU B S, et al. A chromosome-level genome assembly of the yellowfin seabream (Acanthopagrus latus; Hottuyn, 1782) provides insights into its osmoregulation and sex reversal[J]. Genomics, 2021, 113(4): 1617-1627. doi: 10.1016/j.ygeno.2021.04.017
|
[36] |
ZHANG D C, GUO L, GUO H Y, et al. Chromosome-level genome assembly of golden pompano (Trachinotus ovatus) in the family Carangidae[J]. Sci Data, 2019, 6(1): 216. doi: 10.1038/s41597-019-0238-8
|
[37] |
LIANG Y, XIAN L, PAN J M, et al. De Novo genome assembly of the whitespot parrotfish (Scarus forsteni): a valuable scaridae genomic resource[J]. Genes (Basel), 2024, 15(2): 249. doi: 10.3390/genes15020249
|
[38] |
ZHOU Q, GUO X Y, HUANG Y, et al. De novo sequencing and chromosomal-scale genome assembly of leopard coral grouper, Plectropomus leopardus[J]. Mol Ecol Resour, 2020, 20(5): 1403-1413. doi: 10.1111/1755-0998.13207
|
[39] |
CHEN X H, ZHONG L Q, BIAN C, et al. High-quality genome assembly of channel catfish, Ictalurus punctatus[J]. GigaScience, 2016, 5(1): 39. doi: 10.1186/s13742-016-0142-5
|
[40] |
LI J, BIAN C, HU Y C, et al. A chromosome-level genome assembly of the Asian arowana, Scleropages formosus[J]. Sci Data, 2016, 3: 160105.
|
[41] |
LI S S, XIE Z Z, CHEN P, et al. The complete mitochondrial genome of the Platax teira (Osteichthyes: Ephippidae)[J]. Mitochondrial DNA A DNA Mapp Seq Anal, 2016, 27(2): 796-797.
|
[42] |
HUGHES L C, ORTÍ G, HUANG Y, et al. Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data[J]. PNAS, 2018, 115(24): 6249-6254. doi: 10.1073/pnas.1719358115
|
[43] |
HE S, LI L, LYU L Y, et al. Mandarin fish (Sinipercidae) genomes provide insights into innate predatory feeding[J]. Commun Biol, 2020, 3(1): 361. doi: 10.1038/s42003-020-1094-y
|
[44] |
MARSHALL H D, COULSON M W, CARR S M. Near neutrality, rate heterogeneity, and linkage govern mitochondrial genome evolution in Atlantic cod (Gadus morhua) and other gadine fish[J]. Mol Biol Evol, 2009, 26(3): 579-589.
|
[45] |
TEREKHANOVA N V, LOGACHEVA M D, PENIN A A, et al. Fast evolution from precast bricks: genomics of young freshwater populations of threespine stickleback Gasterosteus aculeatus[J]. PLoS Genet, 2014, 10(10): e1004696. doi: 10.1371/journal.pgen.1004696
|
[46] |
AO J Q, MU Y N, XIANG L X, et al. Genome sequencing of the perciform fish Larimichthys crocea provides insights into molecular and genetic mechanisms of stress adaptation[J]. PLoS Genet, 2015, 11(4): e1005118. doi: 10.1371/journal.pgen.1005118
|
[47] |
NIEDERRITER A R, DAVIS E E, GOLZIO C, et al. In vivo modeling of the morbid human genome using Danio rerio[J]. J Vis Exp, 2013(78): e50338.
|
[48] |
DAVIDSON W S, KOOP B F, JONES S J M, et al. Sequencing the genome of the Atlantic salmon (Salmo salar)[J]. Genome Biol, 2010, 11: 403. doi: 10.1186/gb-2010-11-9-403
|
[49] |
LEVANTI M, RANDAZZO B, VIÑA E, et al. Acid-sensing ion channels and transient-receptor potential ion channels in zebrafish taste buds[J]. Ann Anat, 2016, 207: 32-37. doi: 10.1016/j.aanat.2016.06.006
|
[50] |
MOHAMED N A, SAAD M F, SHUKRY M, et al. Physiological and ion changes of Nile tilapia (Oreochromis niloticus) under the effect of salinity stress[J]. Aquac Rep, 2021, 19: 100567. doi: 10.1016/j.aqrep.2020.100567
|
[51] |
IP Y K, CHEW S F. Ammonia production, excretion, toxicity, and defense in fish: a review[J]. Front Physiol, 2010, 1: 134.
|
[52] |
RANDALL D J, TSUI T K N. Ammonia toxicity in fish[J]. Mar Pollut Bull, 2002, 45(1/2/3/4/5/6/7/8/9/10/11/12): 17-23.
|
[53] |
ARILLO A, MARGIOCCO C, MELODIA F, et al. Ammonia toxicity mechanism in fish: studies on rainbow trout (Salmo gairdneri Rich.)[J]. Ecotoxicol Environ Saf, 1981, 5(3): 316-328. doi: 10.1016/0147-6513(81)90006-3
|
[1] | WU Qingqing, HUANG Hui, HAO Shuxian, CEN Jianwei, WEI Ya, XIANG Huan, HU Xiao, ZHAO Yongqiang. Effect of hanging pulp on quality improvement and protein stability of prepared tilapia fillets[J]. South China Fisheries Science, 2024, 20(4): 11-23. DOI: 10.12131/20240100 |
[2] | LENG Meng, LIN Duanquan, WENG Ling, ZHANG Lingjing, MIAO Song, CAO Minjie, SUN Lechang. Enzymatic extraction and physicochemical properties of Porphyra haitanensis protein[J]. South China Fisheries Science, 2023, 19(3): 140-150. DOI: 10.12131/20220242 |
[3] | GE Mengmeng, SHEN Jiandong, TANG Xiaohang, XIA Wenshui, XU Yanshun. Optimization of thermal sterilization process for low-acid and acidified instant laver[J]. South China Fisheries Science, 2022, 18(6): 127-136. DOI: 10.12131/20220003 |
[4] | PEI Ruonan, ZHAI Honglei, QI Bo, YANG Xianqing. Optimization of multi-enzymatic extraction of polysaccharide from Gelidium amansii by response surface methodology[J]. South China Fisheries Science, 2019, 15(6): 88-95. DOI: 10.12131/20190081 |
[5] | ZHANG Tao, WU Yanyan, LI Laihao, YANG Xianqing, LIN Wanling, YANG Shaoling, HAO Shuxian. Optimization of ratio of refrigerants for quick liquid freezing of aquatic product by response surface methodology[J]. South China Fisheries Science, 2019, 15(5): 99-108. DOI: 10.12131/20190038 |
[6] | WANG Xiaohui, QI Bo, YANG Xianqing, YANG Shaoling, MA Haixia, DENG Jianchao. Optimization of enzymatic hydrolysis of protein in abandoned Porphyra haitanensis by response surface methodology and study on antioxidant activity of its hydrolysate[J]. South China Fisheries Science, 2019, 15(2): 93-101. DOI: 10.12131/20180099 |
[7] | LI Shasha, CAO Yucheng, HU Xiaojuan, LI Zhuojia, XU Yu, YANG Keng, XU Chuangwen, WEN Guoliang. Optimization for cultivation parameters of Bacillus sp. A4 using response surface methodology[J]. South China Fisheries Science, 2017, 13(5): 85-93. DOI: 10.3969/j.issn.2095-0780.2017.05.012 |
[8] | CHEN Kang, DAI Zhiyuan, SHEN Qing, HUANG Yaowen. Extraction of phospholipid from Euphausia superba by response surface method and determination of phospholipid molecular species[J]. South China Fisheries Science, 2017, 13(3): 104-112. DOI: 10.3969/j.issn.2095-0780.2017.03.014 |
[9] | SUN Jiying, WU Yanyan, YANG Xianqing, MA Haixia, DENG Jianchao, HU Xiao, ZHOU Wanjun. Sterilization and quality effects of ozone water on cobia fillets[J]. South China Fisheries Science, 2013, 9(6): 66-71. DOI: 10.3969/j.issn.2095-0780.2013.06.011 |
[10] | SHI Hong, HAO Shuxian, YANG Xianqing, LI Laihao, CEN Jianwei, DIAO Shiqiang. Sterilization application of the food grade hydrogen peroxide in shrimp muscle polluted bacteria[J]. South China Fisheries Science, 2006, 2(3): 46-49. |
1. |
杜金辉,章海鑫,张燕萍,陈文静,李完波,徐先栋. 大口黑鲈体表溃疡病原菌的分离鉴定及药物敏感性分析. 中国畜牧兽医. 2025(02): 890-900 .
![]() | |
2. |
李硕,陈静妮,赵立宁,黄春萍,黄锦炉,王贵平,仲颖. 抗大口黑鲈蛙虹彩病毒卵黄抗体的制备及其间接ELISA检测方法的建立. 南方水产科学. 2024(02): 129-139 .
![]() | |
3. |
马兴右,朱志,罗雪莲,张孟琴,印双红,张俊波. 黄精多糖对维氏气单胞菌抑制效果研究. 水产养殖. 2024(06): 30-36 .
![]() | |
4. |
吴伟军,谭红连,韩耀全,杨明伟,邓冬明,陈静,韦信贤,童桂香. 乌原鲤源致病性维氏气单胞菌分离鉴定及其毒力基因分析. 南方农业学报. 2024(05): 1520-1529 .
![]() | |
5. |
王海华,付辉云,王帅兵,马本贺,熊良伟,李涵,王梦杰,李燕华. 蚂蟥水肿病病原的分离鉴定与药敏分析. 中国动物传染病学报. 2024(06): 36-41 .
![]() | |
6. |
朱雪晴,赵飞,邓玉婷,谭爱萍,赖迎迢,巩华,黄志斌,荆鹏华. 大口黑鲈MsIL-21基因的克隆、表达及其对细菌感染的应答特征. 农业生物技术学报. 2023(01): 124-135 .
![]() | |
7. |
陈安婷,张紫瑞,姜群,张晓君,王春波,高晓建. 中草药抑制及杀灭水产病原维氏气单胞菌效果研究. 水产养殖. 2023(04): 4-9 .
![]() | |
8. |
彭鑫,屠海慧,罗金萍,钟镇霄,蓝璇,唐琼英,易少奎,夏正龙,蔡缪荧,杨国梁. 罗氏沼虾源维氏气单胞菌的分离鉴定、毒力基因检测及组织病理学观察. 水生生物学报. 2023(06): 883-894 .
![]() | |
9. |
李媛媛,蔡琰,张连英,孙金辉,包海岩,徐晓丽. 大口黑鲈源鳗弧菌的分离鉴定. 淡水渔业. 2023(03): 46-53 .
![]() | |
10. |
彭小倩,任朝颖,邓雪玥,刘晓云,詹泽玉,张雪扬,郑永华,朱成科. 杂交鲟源温和气单胞菌的分离鉴定及生物学特性的研究. 淡水渔业. 2023(03): 62-70 .
![]() | |
11. |
刘文文,邓玉婷,朱雪晴,赵飞,谭爱萍,王芳,张美超,黄志斌. 鰤诺卡氏菌对大口黑鲈头肾巨噬细胞的侵染过程. 微生物学通报. 2023(06): 2602-2623 .
![]() | |
12. |
张晶晶. 半刺厚唇鱼源维氏气单胞菌的分离鉴定. 中国农学通报. 2023(20): 138-146 .
![]() | |
13. |
汤环宇,翟伟,朱鑫海,周一凡,唐建清,张晓君. 3株水产病原维氏气单胞菌对常用抗菌药物耐药性比较分析. 水产养殖. 2022(02): 19-23 .
![]() | |
14. |
谭爱萍,赵飞,郭忠宝,邓玉婷,张瑞泉,赖迎迢,黄志斌,姜兰. 大口黑鲈白皮病病原菌的分离鉴定及药物敏感性试验. 微生物学通报. 2022(05): 1741-1758 .
![]() | |
15. |
张桓桥,商宝娣,张效平,周贤君,赵凤,李小义,孔杰,杨星,陶莎. 31种中草药及其复方对维氏气单胞菌体外抑菌研究. 淡水渔业. 2022(03): 74-81 .
![]() | |
16. |
雷宁,郝贵杰,黄爱霞,王雨辰,林锋,沈小明,朱俊杰. 大口黑鲈(Micropterus salmoides)致病性维氏气单胞菌的分离鉴定及其特性分析. 海洋与湖沼. 2022(05): 1180-1188 .
![]() | |
17. |
王茜,邓益琴,孙承文,林梓阳,苏雯晓,刘梦瑶,程长洪,郭志勋,冯娟. 维氏气单胞菌重要致病因子基因对环境条件的响应. 南方水产科学. 2022(05): 74-80 .
![]() | |
18. |
张桓桥,商宝娣,赵凤,周贤君,张效平,李小义,孔杰,杨星,陶莎. 昆明裂腹鱼溃疡病病原菌分离鉴定及药物敏感性. 淡水渔业. 2021(06): 54-62 .
![]() |