GAO Shufang, ZHANG Jinpeng, SHI Yonghai, YUAN Xincheng, LIU Qigen. Metabonomics analysis of ovaries of Coilia nasus in seawater and freshwater based on liquid chromatography-mass spectrometry[J]. South China Fisheries Science, 2022, 18(3): 68-75. DOI: 10.12131/20210185
Citation: GAO Shufang, ZHANG Jinpeng, SHI Yonghai, YUAN Xincheng, LIU Qigen. Metabonomics analysis of ovaries of Coilia nasus in seawater and freshwater based on liquid chromatography-mass spectrometry[J]. South China Fisheries Science, 2022, 18(3): 68-75. DOI: 10.12131/20210185

Metabonomics analysis of ovaries of Coilia nasus in seawater and freshwater based on liquid chromatography-mass spectrometry

More Information
  • Received Date: June 23, 2021
  • Revised Date: October 08, 2021
  • Accepted Date: November 03, 2021
  • Available Online: November 09, 2021
  • In order to clarify the effects of seawater and freshwater on the ovary development of Coilia nasus, we analyzed their differences by using non-targeted metabolomics, and compared with database of KEGG directly to find out the corresponding metabolic pathways, then analyzed its causes. The results show that a total of 47 metabolites had significant difference between the two groups (P<0.05, FC>1, VIP>1). Compared with the seawater group, the most significant differences in the expression were carbocyclic thromboxane A2, Galactosylceramide, and their differences were 10.40 and 2.78 times, respectively. The cortisol in the ovarian tissue of the freshwater group increased by 1.61 times. According to the analysis on KEGG metabolic pathways of 47 different metabolites, the biosynthesis of aminoacyl-tRNA and pyridine metabolic pathways changed in the seawater and freshwater environments significantly (P<0.05). The biosynthesis pathway of cortisol, aminoyl-tRNA, pyrimidine metabolism pathway and sphingo-lipid metabolism pathway may be related to the ovarian development during the reproductive migration of C. nasus.
  • [1]
    SU M, DUAN Z, SHI H, et al. The effects of salinity on reproductive development and egg and larvae survival in the spotted scat Scatophagus argus under controlled conditions[J]. Aquac Res, 2019, 50(7): 1782-1794. doi: 10.1111/are.14056
    [2]
    MOHANTY B, GUPTA K, BABU G, et al. Exposure to salinity stress cause ovarian disruption in a stenohaline freshwater teleost, Heteropneustes fossilis (Bloch, 1794)[J]. Aquac Res, 2020, 51(5): 1964-1972. doi: 10.1111/are.14548
    [3]
    PHAM H Q, KJØRSVIK E, NGUYEN A T, et al. Reproductive cycle in female Waigieu seaperch (Psammoperca waigiensis) reared under different salinity levels and the effects of dopamine antagonist on steroid hormone levels[J]. J Exp Mar Biol Ecol, 2010, 383(2): 137-145. doi: 10.1016/j.jembe.2009.12.010
    [4]
    PHAM H Q, NGUYEN A T, KJØRSVIK E, et al. Seasonal reproductive cycle of Waigieu seaperch (Psammoperca waigiensis)[J]. Aquac Res, 2012, 43(6): 815-830. doi: 10.1111/j.1365-2109.2011.02894.x
    [5]
    牛景彦, 刘占才. 影响鱼类性腺发育的生态因素研究[J]. 农业与技术, 2016, 36(16): 109.
    [6]
    杜学芳. 盐度对凡纳滨对虾繁殖及家系生长、存活的影响[D]. 上海: 上海海洋大学, 2013: 9-17.
    [7]
    吴旭干, 赵亚婷, 何杰, 等. 低盐度海水和淡水对中华绒螯蟹性腺发育及交配行为的影响[J]. 动物学杂志, 2013, 48(4): 555-561.
    [8]
    吴建辉, 王家启, 戴小杰, 等. 基于概率模型的长江口鱼类空间共现模式分析[J]. 南方水产科学, 2019, 15(1): 1-9. doi: 10.12131/20180112
    [9]
    ZHU G L, WANG L J, TANG W Q, et al. Identification of olfactory receptor genes in the Japanese grenadier anchovy Coilia nasus[J]. Genes Genomics, 2017, 39(5): 521-532. doi: 10.1007/s13258-017-0517-8
    [10]
    DUAN J R, ZHOU Y F, XU D P, et al. Ovary transcriptome profiling of Coilia nasus during spawning migration stages by Illumina sequencing[J]. Mar Genomics, 2015, 21: 17-19.
    [11]
    LI W X, ZOU H, WU S G, et al. Richness and diversity of helminth communities in the JapaneseI grenadier anchovy, Coilia nasus, during its anadromous migration in the Yangtze River, China[J]. J Parasitol, 2012, 98(3): 449-452. doi: 10.1645/GE-2983.1
    [12]
    LI W X, SONG R, WU S G, et al. Seasonal occurrence of helminths in the anadromous fish Coilia nasus (Engraulidae): parasite indecators of fish migratory movements[J]. J Parasitol, 2011, 97(2): 192-196. doi: 10.1645/GE-2621.1
    [13]
    ZHANG H, WU G, XIE P, et al. Role of body size and temporal hydrology in the dietary shifts of shortjaw tapertail anchovy Coi-lia brachygnathus (Actinopterygii, Engraulidae) in a large floodplain lake[J]. Hydrobiologia, 2013, 703(1): 247-256. doi: 10.1007/s10750-012-1370-z
    [14]
    代培, 严燕, 朱孝彦, 等. 长江刀鲚国家级水产种质资源保护区(安庆段)刀鲚资源现状[J]. 中国水产科学, 2020, 27(11): 1267-1276.
    [15]
    SHEN H, GU R, XU G, et al. In-depth transcriptome analysis of Coilia ectenes, an important fish resource in the Yangtze River: de novo assembly, gene annotation[J]. Mar Genomics, 2015, 23: 15-17. doi: 10.1016/j.margen.2015.03.002
    [16]
    鲜博, 高建操, 徐钢春, 等. 盐度对刀鲚生长、抗氧化应激和渗透压调节能力的影响[J]. 海洋湖沼通报, 2020(2): 152-159.
    [17]
    王武. 鱼类增养殖学[M]. 北京: 中国农业出版社, 2000: 193.
    [18]
    XU G, DU F, LI Y, et al. Integrated application of transcripto-mics and metabolomics yields insights into population-asynchronous ovary development in Coilia nasus[J]. Sci Rep, 2016, 6(1): 1-11. doi: 10.1038/s41598-016-0001-8
    [19]
    YIN D, LIN D, YING C, et al. Metabolic mechanisms of Coilia nasus in the natural food intake state during migration[J]. Genomics, 2020, 112(5): 3294-3305. doi: 10.1016/j.ygeno.2020.05.027
    [20]
    ZHAO H J, XU J K, YAN Z H, et al. Microplastics enhance the developmental toxicity of synthetic phenolic antioxidants by disturbing the thyroid function and metabolism in developing zebrafish[J]. Environ Int, 2020, 140: 105750. doi: 10.1016/j.envint.2020.105750
    [21]
    DING J, HUANG Y, LIU S, et al. Toxicological effects of nano-and micro-polystyrene plastics on red tilapia: are larger plastic particles more harmless?[J]. J Hazard Mater, 2020, 396: 122693. doi: 10.1016/j.jhazmat.2020.122693
    [22]
    ZHANG H, LIU Y, ZHOU L, et al. Metabonomic insights into the sperm activation mechanisms in ricefield eel (Monopterus albus)[J]. Genes, 2020, 11(11): 1259. doi: 10.3390/genes11111259
    [23]
    HUANG Y, ZHANG Y, ZHENG J, et al. Metabolic profiles of fish nodavirus infection in vitro: RGNNV induced and exploited cellular fatty acid synthesis for virus infection[J]. Cell Microbiol, 2020, 22(9): e13216.
    [24]
    OZEN G, NOREL X. Prostanoids in the pathophysiology of human coronary artery[J]. Prostag Oth Lipid M, 2017, 133: 20-28.
    [25]
    YAN H, ZHANG M Z, WONG G, et al. Mechanisms of U46619-induced contraction in mouse intrarenal artery[J]. Clin Exp Pharmacol Physiol, 2019, 46(7): 643-651. doi: 10.1111/1440-1681.13087
    [26]
    SMYTH E M. Thromboxane and the thromboxane receptor in cardiovascular disease[J]. Clin Lipidol, 2010, 5(2): 209-219. doi: 10.2217/clp.10.11
    [27]
    GU W, MADRID D M D, YANG G, et al. Unaltered influenza disease outcomes in swine prophylactically treated with α-galactosylceramide[J]. Dev Comp Immunol, 2021, 114: 103843. doi: 10.1016/j.dci.2020.103843
    [28]
    WANG T, LIU F, TIAN G, et al. Lineage/species-specific expansion of the Mx gene family in teleosts: differential expression and modulation of nine Mx genes in rainbow trout Oncorhynchus mykiss[J]. Fish Shellfish Immunol, 2019, 90: 413-430. doi: 10.1016/j.fsi.2019.04.303
    [29]
    HOEHN K, MARIEB E N. Human anatomy & physiology[M]. San Francisco: Benjamin Cummings, 2010: 1064-1094.
    [30]
    SOPINKA N M, CAPELLE P M, SEMENIUK C A D, et al. Glucocorticoids in fish eggs: variation, interactions with the environment, and the potential to shape offspring fitness[J]. Physiol Biochem Zool, 2017, 90(1): 15-33. doi: 10.1086/689994
    [31]
    MOUSA M A, IBRAHIM M G, KORA M F, et al. Experimental studies on the reproduction of the thin-lipped mullet, Liza ramada[J]. Egypt J Aquat Biol Fish, 2018, 22(3): 125-138. doi: 10.21608/ejabf.2018.9455
    [32]
    CUI W, MA A, WANG X, et al. Myo-inositol enhances the low-salinity tolerance of turbot (Scophthalmus maximus) by modula-ting cortisol synthesis[J]. Biochem Biophys Res Commun, 2020, 526(4): 913-919. doi: 10.1016/j.bbrc.2020.04.004
    [33]
    胡静, 叶乐, 吴开畅, 等. 急性盐度胁迫对克氏双锯鱼幼鱼血浆皮质醇浓度和 Na+-K+-ATP 酶活性的影响[J]. 南方水产科学, 2016, 12(2): 116-120. doi: 10.3969/j.issn.2095-0780.2016.02.017
    [34]
    SARAVANAN M, RAMESH M, PETKAM R, et al. Influence of environmental salinity and cortisol pretreatment on gill Na+/K+-ATPase activity and survival and growth rates in Cyprinus carpio[J]. Aquac Rep, 2018, 11: 1-7. doi: 10.1016/j.aqrep.2018.04.002
    [35]
    KWON N H, FOX P L, KIM S. Aminoacyl-tRNA synthetases as therapeutic targets[J]. Nat Rev Drug Discov, 2019, 18(8): 629-650. doi: 10.1038/s41573-019-0026-3
    [36]
    GOMEZ M A R, IBBA M. Aminoacyl-tRNA synthetases[J]. RNA, 2020, 26(8): 910-936. doi: 10.1261/rna.071720.119
    [37]
    GARAVITO M F, NARVÁEZ-ORTIZ H Y, ZIMMERMANN B H. Pyrimidine metabolism: dynamic and versatile pathways in pathogens and cellular development[J]. J Genet Genomics, 2015, 42(5): 195-205. doi: 10.1016/j.jgg.2015.04.004
    [38]
    LAVIEU G, SCARLATTI F, SALA G, et al. Regulation of autophagy by sphingosine kinase 1 and its role in cell survival during nutrient starvation[J]. J Biol Chem, 2006, 281(13): 8518-8527. doi: 10.1074/jbc.M506182200
    [39]
    HANNUN Y A, OBEID L M. The ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind[J]. J Biol Chem, 2002, 277(29): 25847-25850. doi: 10.1074/jbc.R200008200
  • Cited by

    Periodical cited type(13)

    1. 胥晴,原居林,倪蒙,邹松保,刘梅,顾志敏. 不同净养时间和养殖密度下大口黑鲈的表型特征、健康状况及肌肉营养品质. 水产学报. 2025(01): 176-192 .
    2. 王刘永,刘德露,邓婷,郭海燕. 瘦身养殖模式对草鱼肌肉品质的影响. 水生生物学报. 2025(04): 23-31 .
    3. 胥晴,原居林,倪蒙,邹松保,刘梅,顾志敏. 生态净养对淡水养殖鱼类肌肉品质影响的研究进展. 水产科学. 2024(01): 152-162 .
    4. 凌俊,陈小雷,江河,汪长祥,童开满,潘庭双,胡玉婷,段国庆,周华兴,汪焕. 湖泊深水暂养过程中鳙鱼品质变化研究. 安徽农业科学. 2024(03): 80-87 .
    5. 李庆勇,黄秋标,叶林,刘艺,巫树东,朱德兴,林海强. 禁食处理对尼罗罗非鱼体重及肌肉营养成分的影响. 中国农学通报. 2023(23): 109-115 .
    6. 于俊琦,陶鹏,张皓迪,李虹,李洪琴,罗浩,刘天骥,刘匆,郑轲,罗莉. 低水温下鳜短期饥饿的生理动态变化. 水生生物学报. 2023(12): 2037-2044 .
    7. 张玮岚,叶元土,杜瑞雪,肖旭全,王卓君,殷永风. 短期禁食改善池塘养殖草鱼的食用品质. 水产学报. 2023(10): 184-196 .
    8. 杜瑞雪,叶元土,张玮岚,肖旭全,吴韬. 循环水系统短期禁食改善草鱼和斑点叉尾鮰肌肉品质. 中国渔业质量与标准. 2023(05): 17-30 .
    9. 刘广翔,宋长友,闻海波,吴宁远,陈健翔,李红霞,徐跑. 饥饿胁迫对淡水石首鱼形体指标、肌肉脂肪酸组成及肝脏脂肪代谢基因表达的影响. 动物营养学报. 2022(01): 544-554 .
    10. 黄卉,魏涯,李来好,杨贤庆,岑剑伟,潘创,郝淑贤. 季节变化对杂交鲟鱼肉营养成分的影响. 食品工业科技. 2021(07): 360-365 .
    11. 姜燕,柳学周,崔爱君,王开杰,王滨,徐永江. 黄带拟鲹肌肉营养成分分析. 南方水产科学. 2021(06): 130-135 . 本站查看
    12. 岑剑伟,郝淑贤,魏涯,李来好,杨贤庆,赵永强,黄卉,邓建朝. 不同来源鲑科鱼肌肉营养组成比较. 南方农业学报. 2020(01): 176-182 .
    13. 钟金香,李俊伟,颉晓勇,郭永坚,马海霞,朱长波. 短期饥饿处理对卵形鲳鲹鱼肉品质的影响. 暨南大学学报(自然科学与医学版). 2018(05): 394-401 .

    Other cited types(5)

Catalog

    Article views (731) PDF downloads (101) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return