FENG Yuwei, SU Xinguo, SUN Huiming, LIN Haopeng, CHEN Qionghua, SHU Hu. Identification and denitrification performance of a high ammonia nitrogen-resistant aerobic denitrifying bacteria[J]. South China Fisheries Science, 2023, 19(6): 107-115. DOI: 10.12131/20230079
Citation: FENG Yuwei, SU Xinguo, SUN Huiming, LIN Haopeng, CHEN Qionghua, SHU Hu. Identification and denitrification performance of a high ammonia nitrogen-resistant aerobic denitrifying bacteria[J]. South China Fisheries Science, 2023, 19(6): 107-115. DOI: 10.12131/20230079

Identification and denitrification performance of a high ammonia nitrogen-resistant aerobic denitrifying bacteria

More Information
  • Received Date: April 15, 2023
  • Revised Date: September 03, 2023
  • Accepted Date: September 21, 2023
  • Available Online: June 20, 2023
  • Ammonia (NH4 +-N), nitrate (NO3 -N) and nitrite (NO2 -N) are the main contaminants in industrial aquaculture systems. High nitrogen concentration in water is likely to cause aquaculture water pollution and endanger the safety of aquatic animals. Aerobic denitrifying bacteria are widely used to remove nitrogen-containing aquaculture wastewater. In order to obtain a strain that can safely and efficiently treat wastewater with high ammonia nitrogen concentration, we studied the aerobic denitrifying bacteria WM28 with high ammonia nitrogen resistance screened from aquaculture ponds. The strain was identified through morphological observation, physiological and biochemical tests and 16S rRNA gene sequencing. The environmental and biological safety of the strains were evaluated through antibiotic tests and zebrafish (Danio rerio) toxicity tests. The growth and denitrification performance were measured in three single nitrogen source simulated wastewater, and the denitrification capacity was tested in high concentration ammonia nitrogen simulated wastewater. WM28 was identified as Rhodococcus ruber with high antibiotic sensitivity and good biosafety. The removal rates were 100%, 76.3% and 66.99% after 48 h incubation in single NH4 +-N, NO3 -N and NO2 -N media, respectively. Their removal rates of NH4 +-N reached 100% at high concentrations of 100–500 mg·L−1 NH4 +-N in simulated wastewater experiment after 48 h. 700 mg·L−1 NH4 +-N was removed by more than 88% after 116 h. At 120th hour, the initial NH4 +-N concentration of 1 000 mg·L−1 was still capable of denitrification with a removal rate of 74.38%, which indicates that strain WM28 has great tolerance to high ammonia nitrogen. In summary, strain WM28 is a safe and efficient aerobic denitrifying bacteria with high ammonia tolerance, and has promising application prospects in the treatment of aquaculture and industrial wastewater.

  • [1]
    农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2022中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2022: 47-63.
    [2]
    DENG M, ZHAO X L, SENBATI Y, et al. Nitrogen removal by heterotrophic nitrifying and aerobic denitrifying bacterium Pseudomonas sp. DM02: removal performance, mechanism and immobilized application for real aquaculture wastewater treatment[J]. Bioresour Technol, 2021, 322: 1-10.
    [3]
    GUO L Y, CHEN Q K, FANG F, et al. Application potential of a newly isolated indigenous aerobic denitrifier for nitrate and ammonium removal of eutrophic lake water[J]. Bioresour Technol, 2013, 142: 45-51. doi: 10.1016/j.biortech.2013.05.021
    [4]
    HAN Y H, ZHANG W X, LU W X, et al. Co-immobilization of Pseudomonas stutzeri YHA-13 and Alcaligenes sp. ZGED-12 with polyvinyl alcohol-alginate for removal of nitrogen and phosphorus from synthetic wastewater[J]. Environ Technol, 2014, 35(22): 2813-2820. doi: 10.1080/09593330.2014.923516
    [5]
    GLEN R R, TERESA G, MARCEL M P, et al. The nitrification process for nitrogen removal in biofloc system aquaculture[J]. Rev Aquac, 2020, 12(4): 1-22.
    [6]
    朱瑞金, 敬志豪, 唐波, 等. 工厂化循环水产养殖废水处理研究进展[J]. 黑龙江科学, 2022, 13(2): 4-6.
    [7]
    RAJTA A, BHATIA R, SETIA H, et al. Role of heterotrophic aerobic denitrifying bacteria in nitrate removal from wastewater.[J]. J Appl Microbiol, 2020, 128(5): 1261-1278. doi: 10.1111/jam.14476
    [8]
    蔡茜. 铁与铜离子对Arthrobacter nicotianae D51异养硝化和好氧反硝化作用的影响[D]. 重庆: 西南大学, 2019: 21-30.
    [9]
    刘方剑. 一株高效异养硝化-好氧反硝化细菌WZ17的筛选及其脱氮特性研究[D]. 温州: 温州大学, 2020: 35-50.
    [10]
    XIA L, LI X M, FAN W H, et al. Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp. ND7 isolated from municipal activated sludge[J]. Bioresour Technol, 2020, 301: 1-8.
    [11]
    赵洋, 孙慧明, 林浩澎, 等. 一株安全高效的好氧反硝化菌Pseudomonas stutzeri DZ11的生物安全性及脱氮性能研究[J]. 生物技术通报, 2022, 38(10): 226-234.
    [12]
    东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001: 267-398.
    [13]
    PARTE A C, WHITMAN W B, GOODFELLOW M, et al. Bergey's manual of systematic bacteriology Volume Five[M]. 2nd ed. New York: Springer, 2012: 237-469.
    [14]
    SHU H, SUN H M, HUANG W, et al. Nitrogen removal characteristics and potential application of the heterotrophic nitrifying-aerobic denitrifying bacteria Pseudomonas mendocina S16 and Enterobacter cloacae DS'5 isolated from aquaculture wastewater ponds[J]. Bioresour Technol, 2021, 345: 1-10.
    [15]
    符颖. 肠炎沙门菌对四代头孢菌素: 头孢吡肟耐药机制的研究[D]. 广州: 华南农业大学, 2018: 6-29.
    [16]
    徐丽华, 李文均, 刘志恒, 等. 放线菌系统学: 原理、方法及实践[M]. 北京: 科学出版社, 2007: 3-5.
    [17]
    王田野, 魏荷芬, 胡子全, 等. 一株异养硝化好氧反硝化菌的筛选鉴定及其脱氮特性[J]. 环境科学学报, 2017, 37(3): 945-953.
    [18]
    唐钧. 微生态制剂在水产养殖中的应用及存在的问题[J]. 当代畜禽养殖业, 2020(10): 60-62.
    [19]
    张智超, 孙宏, 吴逸飞, 等. 基于PCR-DGGE技术辅助筛选氨氮降解菌株[J]. 浙江农业学报, 2017, 29(2): 286-291.
    [20]
    田雅洁, 曹煜成, 胡晓娟, 等. 4种因子对玫瑰红红球菌XH2氨氮去除效果的影响[J]. 渔业科学进展, 2018, 39(6): 164-172.
    [21]
    司文攻, 吕志刚, 许超. 耐受高浓度氨氮异养硝化菌的筛选及其脱氮条件优化[J]. 环境科学, 2011, 32(11): 3448-3454. doi: 10.13227/j.hjkx.2011.11.004
    [22]
    华苟根, 郭坚华. 红球菌属的分类及应用研究进展[J]. 微生物学通报, 2003(4): 107-111.
    [23]
    余万里. 新疆五个马场马红球菌流行病学调查及其感染病例的诊治[D]. 乌鲁木齐: 新疆农业大学, 2022: 30-40.
    [24]
    KHALIL N, CORKER L, POWELL E A, et al. Neonatal bacteremia and oligoarthritis caused by Rhodococcus corynebacterioides/ Rhodococcus kroppenstedtii[J]. Diagn Microbiol Infect Dis, 2019, 94(4): 395-397. doi: 10.1016/j.diagmicrobio.2019.02.005
    [25]
    章程. 水产健康养殖微生态制剂研发及产业化[J]. 江西水产科技, 2021(6): 38-40.
    [26]
    刘孟豪, 汪明金, 何秘, 等. 环境中抗生素抗性菌及抗性基因的研究进展[J]. 安徽农学通报, 2021, 27(2): 12-15.
    [27]
    QIAO Z X, SUN R, WU Y G, et al. Characteristics and metabolic pathway of the bacteria for heterotrophic nitrification and aerobic denitrification in aquatic ecosystems[J]. Environ Res, 2020, 191: 1-10.
    [28]
    TODESCATO D, MAASS D, MAYER D A, et al. Optimal production of a Rhodococcus erythropolis ATCC 4277 biocatalyst for biodesulfurization and biodenitrogenation applications[J]. Appl Biochem Biotechnol, 2017, 183: 1375-1389. doi: 10.1007/s12010-017-2505-5
    [29]
    SU Z P, LI Y, PAN L Q, et al. Nitrogen removal performance, quantitative detection and potential application of a novel aerobic denitrifying strain, Pseudomonas sp. GZWN4 isolated from aquaculture water[J]. Bioprocess Biosyst Eng, 2021, 44: 1237-1251. doi: 10.1007/s00449-021-02523-9
    [30]
    张明霞, 李安章, 陈猛, 等. 异养硝化-好氧反硝化菌脱氮相关酶系及其编码基因的研究进展[J]. 生物技术进展, 2020, 10(1): 40-45.
    [31]
    程丹阳. Pseudomonas stutzeri XL-2的氮代谢机制及其在SBAR好氧颗粒污泥中的强化应用[D]. 重庆: 重庆大学, 2018: 21-34.
    [32]
    白福良, 刘志鹏, 田辉, 等. 一种红城红球菌及其构建方法和在污水处理中的应用: CN104560858A[P]. 2015-04-29.
    [33]
    WANG J L, CHEN P Z, LI S P, at al. Mutagenesis of high-efficiency heterotrophic nitrifying-aerobic denitrifying bacterium Rhodococcus sp. strain CPZ 24[J]. Bioresour Technol, 2022, 361: 1-10.
    [34]
    张卫艺, 张丽丽, 直俊强, 等. 红平红球菌发酵液对猪场废水处理的研究[J]. 环境科学导刊, 2020, 39(6): 78-81. doi: 10.13623/j.cnki.hkdk.2020.06.012
  • Related Articles

    [1]SHI Juan, LIU Yong, LI Chunhou, WANG Teng, ZHAO Jinfa, SONG Xiaoyu, XIE Hongyu. Trophic niche analysis of Collichthys lucidus in Pearl River Estuary[J]. South China Fisheries Science, 2024, 20(3): 56-65. DOI: 10.12131/20240025
    [2]SUN Ye, LIU Yong, LI Chunhou, WU Peng, LI Yafang, SHU Liming, LIN Lin, XIAO Yayuan, TANG Guanglong. Community characteristics and influencing factors of macrobenthos in Pearl River Estuary[J]. South China Fisheries Science, 2023, 19(5): 39-47. DOI: 10.12131/20230048
    [3]XU Shannan, YANG Yutao, SU Li, GONG Yuyan, CHEN Zuozhi. Community structure of phytoplankton in the Nansha sea area of Pearl River Estuary[J]. South China Fisheries Science, 2017, 13(4): 26-33. DOI: 10.3969/j.issn.2095-0780.2017.04.004
    [4]YUAN Meng, TANG Yong, XU Shannan, CHEN Zuozhi, YANG Yutao, JIANG Yan′e. Community structure of fishery resources from the Nanshawaters of Pearl River Estuary in autumn[J]. South China Fisheries Science, 2017, 13(2): 18-25. DOI: 10.3969/j.issn.2095-0780.2017.02.003
    [5]SHUAI Fangmin, LI Zhiquan, LIU Guowen, LI Xinhui, LI Yuefei, YANG Jiping, LI Jie. Resource status of Japanese eel (Anguilla japonica) in the Pearl River Estuary[J]. South China Fisheries Science, 2015, 11(2): 85-89. DOI: 10.3969/j.issn.2095-0780.2015.02.012
    [6]YANG Lin, ZHANG Xufeng, TAN Yongguang, ZHANG Peng. Analysis of the catch composition of small shrimp-beam-trawl net in shallow waters of Pearl River Estuary, China[J]. South China Fisheries Science, 2008, 4(6): 70-77.
    [7]GAO Yuan, LAI Zini, WANG Chao, PANG Shixun, WEI Taili, XIE Wenping, YANG Wanling. Community characteristics of zooplankton in Pearl River Estuary in summer of 2006[J]. South China Fisheries Science, 2008, 4(1): 10-15.
    [8]WANG Di, LIN Zhaojin. Spatial and temporal variations of fish community structure in the Pearl River Estuary waters[J]. South China Fisheries Science, 2006, 2(4): 37-45.
    [9]YANG Mei-lan, LIN Qin, LU Xiao-yu, CAI Wen-gui. Distribution characteristics of suspended substance in the Lingdingyang water of the Pearl River Estuary[J]. South China Fisheries Science, 2005, 1(2): 51-55.
    [10]YANG Lin, ZHANG Xufeng, ZHANG Peng, TAN Yongguang. Composition of by-catch of shrimping beam trawl in the Pearl River Estuary, China[J]. South China Fisheries Science, 2005, 1(1): 27-34.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return