Citation: | CHEN Suhua, QIN Xiaoming, ZHANG Chaohua, CAO Wenhong, ZHENG Huina, LIN Haisheng. Effects of enzymatic hydrolysate products of oyster on lactation in overloaded lactating rats[J]. South China Fisheries Science, 2021, 17(6): 107-114. DOI: 10.12131/20210139 |
[1] |
任琰. 香港牡蛎与近江牡蛎、葡萄牙牡蛎的种间杂交研究[D]. 南宁: 广西大学, 2020: 1-4.
|
[2] |
刘海梅, 陈静, 安孝宇, 等. 牡蛎酶解工艺参数优化及其产物分析与评价[J]. 食品科学, 2017, 38(14): 240-244. doi: 10.7506/spkx1002-6630-201714037
|
[3] |
林海生, 秦小明, 章超桦, 等. 中国沿海主要牡蛎养殖品种的营养品质和风味特征比较分析[J]. 南方水产科学, 2019, 15(2): 110-120. doi: 10.12131/20180226
|
[4] |
曹苇, 冯娅婷, 谭成玉. 牡蛎蛋白及肽的研究进展[J]. 精细与专用化学品, 2020, 28(4): 5-8.
|
[5] |
MATSUDA Y, YOSHIDA M. Examination of the anti-tumor action of oyster extract for P388 leukemia[J]. J Jpn Health Med Assoc, 2017, 13(1): 3-10.
|
[6] |
BANG J S, JIN Y J, CHOUNG S Y. Low molecular polypeptide from oyster hydrolysate recovers photoaging in SKH-1 hairless mice[J]. Toxicol Appl Pharmacol, 2020, 386(1): 114844.
|
[7] |
WANG Q K, LI W, HE Y H, et al. Novel antioxidative peptides from the protein hydrolysate of oysters (Crassostrea talienwhanensis)[J]. Food Chem, 2014, 145: 991-996. doi: 10.1016/j.foodchem.2013.08.099
|
[8] |
张可佳. 牡蛎ACE抑制肽的制备工艺及活性研究[D]. 大连: 大连海洋大学, 2019: 1-7.
|
[9] |
陈宏. 牡蛎DPP-Ⅳ抑制肽的分离纯化及其作用机理研究[D]. 厦门: 集美大学, 2020: 1-11.
|
[10] |
HWANG D, KANG M J, JO M J, et al. Anti-inflammatory activity of β-thymosin peptide derived from Pacific oyster (Crassostrea gigas) on NO and PGE2 production by down-regulating NF-κB in LPS-induced raw264.7 macrophage cells[J]. Mar Drugs, 2019, 17(2): 129. doi: 10.3390/md17020129
|
[11] |
MARTIN C R, LING P R, BLACKBURN G, et al. Review of infant feeding: key features of breast milk and infant formula[J]. Nutrients, 2016, 8(5): 279-290. doi: 10.3390/nu8050279
|
[12] |
ANDERSON P O, FASHP P D. Effect of breastfeeding on neonatal abstinence syndrome[J]. Am J Health Syst Pharm, 2016, 73(12): 864. doi: 10.2146/ajhp150973
|
[13] |
GIOVANNI S, ANTONIO C, GIOVANNI C. Macronutrient balance and micronutrient amounts through growth and development[J]. Ital J Pediatr, 2021, 47(1): 109-123. doi: 10.1186/s13052-021-01061-0
|
[14] |
HOBAN R, PATEL A L, MEDINA P C, et al. Human milk biomarkers of secretory activation in breast pump-dependent mothers of premature infants[J]. Breastfeed Med, 2018, 13(5): 352-360. doi: 10.1089/bfm.2017.0183
|
[15] |
MIRIAM E. Breast milk is conditionally perfect[J]. Med Hypotheses, 2018, 111: 82-89. doi: 10.1016/j.mehy.2017.12.020
|
[16] |
KIMMEL M C, BAUER A, MELTZER-BRODY S. Toward a framework for best practices and research guidelines for perinatal depression research[J]. J Neurosci Res, 2020, 98(7): 1255-1267. doi: 10.1002/jnr.24425
|
[17] |
王芬, 朱伟新, 周桂妃. 产后康复治疗仪对剖宫产初产妇产后泌乳心理状态及生活质量的影响[J]. 中国妇幼保健, 2021, 36(10): 2410-2412.
|
[18] |
常格. 牡蛎蛋白酶解产物抗疲劳作用研究及新产品研发[D]. 湛江: 广东海洋大学, 2016: 7.
|
[19] |
胡培丽, 梁怿, 林飞. 鱼牡蛎生乳灵胶囊促进大鼠泌乳功能的实验研究[J]. 癌变. 畸变. 突变, 2014, 26(4): 285-287.
|
[20] |
汪琴, 乔海, 白晋. 低频超声促进哺乳期大鼠泌乳的实验研究[J]. 南方医科大学学报, 2012, 32(5): 730-733. doi: 10.3969/j.issn.1673-4254.2012.05.033
|
[21] |
宋淑兰, 谢启文, 王玉波. 实验性大鼠产后泌乳不足模型的建立及灭吐灵催乳作用[J]. 中国应用生理学杂志, 1991, 7(4): 340-342.
|
[22] |
曾自珍, 常惠礼, 麦洁玲, 等. 药物治疗产后缺乳的研究进展[J]. 北方药学, 2019, 16(1): 146-147. doi: 10.3969/j.issn.1672-8351.2019.01.117
|
[23] |
牛振峰. 一种促进产妇泌乳及恢复的营养品: CN107259436A[P]. 2017-10-20.
|
[24] |
李光晓, 刘超. 一种分散均匀、促进泌乳的组合物及其制备方法: CN107801936A [P]. 2018-03-16.
|
[25] |
刘喜红. 母乳成分与泌乳机制的研究进展[J]. 发育医学电子杂志, 2019, 7(2): 86-89. doi: 10.3969/j.issn.2095-5340.2019.02.002
|
[26] |
MACIAS H, HINCK L. Mammary gland development[J]. Wiley Interdiscip Rev Dev Biol, 2012, 1(4): 533-557. doi: 10.1002/wdev.35
|
[27] |
PAWLOWSKI K M, POPIELARZ D, SZYSZKO K, et al. Growth hormone receptor (GHR) RNAi decrease proliferation and enhances apoptosis in CMT-U27 canine mammary carcino-ma cell line[J]. Vet Comp Oncol, 2012, 10(1): 2-15. doi: 10.1111/j.1476-5829.2011.00269.x
|
[28] |
SONG Y, SANTEN R J, WANG J P, et al. Effects of the conju-gated equine estrogen/bazedoxifene tissue-selective estrogen complex (TSEC) on mammary gland and breast cancer in mice[J]. Endocrinology, 2012, 153(12): 5706-5715. doi: 10.1210/en.2012-1583
|
[29] |
李胜. STAT5对水牛乳腺上皮细胞增殖和乳蛋白基因表达的调控作用及乳腺组织的定量蛋白质组学研究[D]. 南宁: 广西大学, 2019: 1-22.
|
[30] |
DARIAS A G, GOMEZ N M D, MARTIN S R, et al. 'Supporting a first-time mother': assessment of success of a breastfeeding promotion programme[J]. Midwifery, 2020, 85(C): 102670.
|
[31] |
SORCE L R, CURLEY M A Q, KLEINPELL R, et al. Mother's own milk feeding and severity of respiratory illness in acutely ill children: an integrative review[J]. J Pediatr Nurs, 2020, 50(C): 5-13.
|
[32] |
王一飞, 宋阳, 陈宝艳, 等. “米酒鸡”食疗方对产后缺乳母鼠催乳素受体及β酪蛋白表达的影响[J]. 广州中医药大学学报, 2018, 35(4): 689-693.
|
[33] |
张荣庆, 韩正康, 陈杰, 等. 大豆黄酮促进妊娠大鼠乳腺发育和泌乳的实验研究[J]. 动物学报, 1995, 41(4): 414-419.
|
1. |
况宇,何亚,欧阳康,杨慧,王良牟,李大鹏,李莉. 氨氮和微囊藻毒素-LR联合作用对斑马鱼肠道免疫和菌群的影响. 生态毒理学报. 2024(03): 287-305 .
![]() | |
2. |
陈丽婷,吴剑峰,陶志明,严欣,郭忠宝,罗永巨,李满园,肖俊,梁军能,黄峥. 封闭型水体中养殖密度对罗非鱼生长性能和水质的影响. 广西科学. 2024(02): 279-286 .
![]() | |
3. |
王雪芹,杨晓玲,彭衡阳,戴景辉,阳涛. 氨氮应激对鱼类生命活动影响的研究进展. 水产养殖. 2024(08): 18-24 .
![]() | |
4. |
王念民,杨合霖,丰超杰,吕伟华,曹顶臣,徐伟,张颖. 碳酸盐碱度对3月龄杂交鲟(Huso dauricus♀×Acipenser schrenckii♂)生长与血清生化指标的影响. 上海海洋大学学报. 2023(01): 98-107 .
![]() | |
5. |
田莹莹,师东阳,姬燕培,孙向辉. NaCl改性沸石用于发酵藻液脱氮的研究. 河南工学院学报. 2023(02): 6-13 .
![]() | |
6. |
石雪,吕湘琳,齐红莉,刘家乐. 硝酸钠和氯化铵对蠕形康纤虫的毒性影响. 天津农学院学报. 2023(03): 53-58 .
![]() | |
7. |
陈坤海,周玥琪,梁何可,梁君夏,何欢,陈贵荣,赵早亚. 氨氮与亚硝酸盐对吉富罗非鱼肠道菌群的影响. 陕西农业科学. 2023(11): 83-90 .
![]() | |
8. |
赵斌,周红学,李成林,赵洪友,胡炜,程晓艳,韩莎. 氨氮胁迫对刺参“鲁海1号”非特异性免疫的影响. 西北农林科技大学学报(自然科学版). 2022(02): 17-24 .
![]() | |
9. |
孙雪倩,李丽,董双林,侯润川,赵鑫. 基于不同投喂模式的循环水养殖系统中三级生物滤池运行效率研究. 中国海洋大学学报(自然科学版). 2022(05): 32-43 .
![]() | |
10. |
刘广鑫,董晏君,赵丽娟,邓益琴,程长洪,马红玲,江建军,冯娟,郭志勋,林蠡. 贝莱斯芽孢杆菌LG37全基因组测序分析及无机氮代谢相关候选基因的筛选. 南方水产科学. 2022(03): 57-67 .
![]() | |
11. |
王梦杰,马本贺,王玮欣,陈建华,王海华,朱明. 慢性氨氮胁迫对台湾泥鳅幼鱼生长、免疫及组织结构的影响. 水生生物学报. 2021(02): 267-274 .
![]() | |
12. |
韩朝婕,陈屹洋,贺振楠,张严匀,周文礼,高金伟,贾旭颖. 氨氮胁迫对水产动物生长、消化酶及免疫影响的研究进展. 河北渔业. 2021(05): 32-35 .
![]() | |
13. |
管敏,张德志,唐大明. 慢性氨氮胁迫对史氏鲟幼鱼生长及其肝脏抗氧化、免疫指标的影响. 南方水产科学. 2020(02): 36-42 .
![]() | |
14. |
程龙,彭丰,李晋南,徐奇友,王连生. 不同碱度和ɑ-酮戊二酸水平对松浦镜鲤肠道形态及消化酶活性的影响. 水产学杂志. 2020(01): 19-24 .
![]() | |
15. |
王艳玲,赵金良,赵岩. 环境胁迫对鱼类免疫机制影响的研究进展. 河北渔业. 2020(05): 46-50+62 .
![]() | |
16. |
胡晓娟,文国樑,田雅洁,苏浩昌,徐武杰,徐煜,许云娜,曹煜成. 不同培养条件下菌株NB5对氨氮的去除效果研究. 南方水产科学. 2020(06): 89-96 .
![]() | |
17. |
谭春明,赵旺,于刚,吴开畅,杨蕊,温为庚,陈旭,张玥. 氨氮胁迫对方斑东风螺溶菌酶及3种常见消化酶活力的影响. 南方水产科学. 2019(03): 120-125 .
![]() | |
18. |
胡晓娟,文国樑,田雅洁,黄小帅,徐煜,许云娜,李卓佳,曹煜成. 4种理化因子对菌株XH1硝化效果的影响. 微生物学通报. 2019(06): 1291-1299 .
![]() | |
19. |
唐首杰,刘辛宇,吴太淳,赵金良. 慢性氨氮胁迫对“新吉富”罗非鱼幼鱼生长及血清生化指标的影响. 水产科学. 2019(06): 741-748 .
![]() | |
20. |
王国强,李笑天,费凡,黄滨,刘宝良. 养殖鱼类对水质胁迫的生理响应特征研究进展. 江西水产科技. 2019(04): 45-52 .
![]() | |
21. |
管敏,张德志,唐大明,张厚本. 慢性氨氮胁迫对子二代中华鲟生长、抗氧化及免疫指标的影响. 海洋渔业. 2019(06): 684-693 .
![]() | |
22. |
杨琦,董然然,冉严,张尧,白天泉. 环境激素壬基酚对杂交鲟血液指标和糖原含量的影响. 水产科学. 2018(05): 653-657 .
![]() | |
23. |
封琦,朱光来,王建国,齐富刚,熊良伟,王权. 氨氮对中华鳑鲏的急性毒性及2种代谢酶活性的影响. 淡水渔业. 2018(01): 91-96 .
![]() | |
24. |
付莹,赵玉蓉. 氨氮对鱼类的毒性及鱼类应对氨氮毒性的策略. 水产学杂志. 2018(03): 49-54 .
![]() | |
25. |
吴波,谢晶. 鱼类保活运输中应激反应诱发因素及其影响研究进展. 食品与机械. 2018(07): 169-172+203 .
![]() | |
26. |
史磊磊,范立民,陈家长,邴旭文,赵志祥,胡庚东,吴伟. 不同摄食状态罗非鱼养殖水体微生物群落功能多样性初探. 中国农学通报. 2018(05): 147-152 .
![]() | |
27. |
胡炜,赵斌,李成林,韩莎,张少春. 慢性氨氮胁迫对刺参摄食与消化酶活性的影响. 中国水产科学. 2018(01): 137-146 .
![]() | |
28. |
彭军辉,陈丽英,程长洪,冯娟,马红玲,郭志勋. 氨氮对拟穴青蟹的急性毒性及对其血清免疫相关酶活力的影响. 渔业科学进展. 2018(05): 114-121 .
![]() | |
29. |
刘亚娟,胡静,周胜杰,彭晓瑜,马振华. 急性氨氮胁迫对尖吻鲈稚鱼消化酶及抗氧化酶活性的影响. 南方农业学报. 2018(10): 2087-2095 .
![]() | |
30. |
Fu Ying,Lu Juanjuan,Pi Jie. A Review:Toxicity of Ammonia-N to Fish and Detoxification Strategy of Fish. Animal Husbandry and Feed Science. 2018(Z1): 306-310 .
![]() |
|
31. |
段亚飞,李健,李吉涛,张喆,刘萍. 致病性粪肠球菌对脊尾白虾(Exopalaemon carinicauda)免疫相关基因表达的影响. 渔业科学进展. 2017(05): 148-155 .
![]() | |
32. |
陈劲松,江世贵,黄建华,杨其彬,马振华,周发林. 斑节对虾天门冬氨酸转氨酶基因的克隆及氨氮胁迫条件下的表达分析. 南方水产科学. 2017(03): 73-82 .
![]() | |
33. |
王芸,李健,何玉英,段亚飞,张喆,李吉涛. 氨氮胁迫对中国明对虾血淋巴氨氮、尿素氮含量和抗氧化能力的影响. 中国水产科学. 2017(01): 180-189 .
![]() | |
34. |
郝淑贤,叶鸽,李来好,黄卉,魏涯,杨贤庆,林婉玲,袁晓敏. 不同养殖模式罗非鱼的挥发性成分分析. 食品与发酵工业. 2016(06): 147-152 .
![]() | |
35. |
汪翔,何吉祥,佘磊,张静. Elman网络在养殖水体氨氮预测中的应用研究. 安徽农业科学. 2015(31): 365-367 .
![]() | |
36. |
Wang Xiang,He Jixiang,She Lei,Zhang Jing. Establishment of NH_3-N Prediction Model in Aquaculture Water Based on ELMAN Neural Network. Meteorological and Environmental Research. 2015(10): 19-22 .
![]() |