WANG Yongjin, ZHANG Xun, ZHANG Yu, ZHOU Aizhong, LI Ziniu, WANG Shuaijie, LIU Longteng, WANG Lumin. Influence of main structural parameters on performance of bottom trawl with large-size mesh[J]. South China Fisheries Science, 2021, 17(4): 66-73. DOI: 10.12131/20210026
Citation: WANG Yongjin, ZHANG Xun, ZHANG Yu, ZHOU Aizhong, LI Ziniu, WANG Shuaijie, LIU Longteng, WANG Lumin. Influence of main structural parameters on performance of bottom trawl with large-size mesh[J]. South China Fisheries Science, 2021, 17(4): 66-73. DOI: 10.12131/20210026

Influence of main structural parameters on performance of bottom trawl with large-size mesh

More Information
  • Received Date: January 13, 2021
  • Revised Date: March 24, 2021
  • Accepted Date: April 07, 2021
  • Available Online: April 15, 2021
  • To optimize the structure of bottom trawl with lagre-size mesh, we selected a typical domestic single bottom trawl with large mesh as research object. Based on L9(34) orthogonal table, we designed the orthogonal tests including factors such as the ratio of total length of net to perimeter (L/C), the ratio of headline length to groundline length (S1/S2), and the ratio of net body length to total length of nets (Lb/L). Besides, we applied the mean and extreme difference analysis method to detect the influence of above structure parameters on resistance (R), vertical expansion of trawl mouth (H) and energy consumption coefficient (Ce). The results show that with different horizontal expansion, the influence of three factors on R followed an order of L/C>S1/S2 >Lb/L, that on H followed an order of S1/S2>Lb/L>L/C, and that on Ce followed an order of L/C>S1/S2>Lb/L. The L/C of this type of trawl should be relatively smaller than that of trawl with small-size mesh, and the smaller the L/C was, the smaller R would be. Under these conditions, L/C=0.2 was the optimal value when vertical expansion of bottom trawl and energy consumption coefficient were used as indicators. Compared with small-size mesh trawl, S1/S2 should be higher, and the higher the S1/S2 was, the better the vertical expansion of the net mouth would be. Within the range of 0.83–0.99, S1/S2 had no significant impact on the resistance, and S1/S2=0.99 was the optimal value when energy consumption coefficient was taken as the indicator. Lb/L decreased with the increase of mesh size, but the decreasing range gradually reduced. Lb/L=0.65 should be suitable for medium or low speed trawl, while Lb/L=0.75 should be more suitable for high speed and fastly towing.
  • [1]
    张秋华, 程家骅, 徐汉祥, 等. 东海区渔业资源极其可持续利用[M]. 上海: 复旦大学出版社, 2007: 494-494.
    [2]
    陈雪忠, 黄锡昌. 渔具模型试验理论与方法[M]. 上海: 上海科学技术出版社, 2011: 2-5.
    [3]
    万荣, 候恩淮. 拖网的网袖结构对其性能的影响[J]. 海洋湖沼通报, 1992(3): 60-63.
    [4]
    贾长礼, 王文硕, 冯亚库. 拖网网身结构变化对网具性能影响的试验研究[J]. 苏州大学学报, 1998(水产捕捞专辑): 77-81.
    [5]
    陈雪忠, 徐宝生, 项忆军, 等. 底拖网网口垂直扩张的分析研究[C]//中国水产捕捞学术研讨会论文集. 苏州: 苏州大学出版社, 1997: 167-170.
    [6]
    徐鹏翔, 许柳雄, 孟涛, 等. 日韩小网目南极磷虾拖网性能对比分析[J]. 中国水产科学, 2015, 22(4): 837-846.
    [7]
    周爱忠, 冯春雷, 张勋, 等. 调整作业参数对小网目南极磷虾拖网水动力性能的影响[J]. 海洋渔业, 2016, 38(1): 74-82. doi: 10.3969/j.issn.1004-2490.2016.01.010
    [8]
    周爱忠, 张勋, 张禹, 等. 基于正交试验方法的四片式虾拖网结构参数优化[J]. 中国水产科学, 2017, 24(3): 640-647.
    [9]
    李灵智, 陈帅, 杨嘉樑, 等. 南极磷虾四片式小网目中层拖网作业性能分析[J]. 中国水产科学, 2017, 24(4): 893-901.
    [10]
    冯春雷, 刘健, 张禹, 等. 南极磷虾拖网结构优化设计与网具性能试验[J]. 农业工程学报, 2017, 33(7): 75-81. doi: 10.11975/j.issn.1002-6819.2017.07.010
    [11]
    伍贻惠, 郁岳峰, 林淮, 等. 拖网模型试验若干问题的研究[C]//中国水产捕捞学术研讨会论文集. 苏州: 苏州大学出版社, 1997: 27-36.
    [12]
    王明彦, 陈雪忠, 徐宝生. 双船拖网渔具设计参数的研究[J]. 水产学报, 1996, 20(1): 36-45.
    [13]
    许永久, 张敏. 智利竹䇲鱼中层拖网设计参数与作业性能分析[J]. 现代渔业信息, 2009, 24(12): 20-25.
    [14]
    王文硕. 中层拖网工具性能和调整技术的试验[J]. 水产科学, 1995, 14(4): 31-34.
    [15]
    陈雪忠, 郁岳峰, 刘峰, 等. 四片式中层拖网主要部件尺寸变化对其性能的影响[J]. 水产学报, 1997, 3(1): 49-56.
    [16]
    戴天元, 郭献盛, 杨丁言. 大网目底中层拖网模型试验研究[J]. 福建水产, 2001, 11(3): 19-25.
    [17]
    FUJIMORI Y, CHIBA K, OSHIMA T, et al. The influence of warp length on trawl dimension and catch of walleye pollock Theragra chalcogramma in a bottom trawl survey[J]. Fish Sci, 2005, 71(4): 738-747. doi: 10.1111/j.1444-2906.2005.01023.x
    [18]
    冯春雷, 黄洪亮, 陈雪忠. 主要作业参数对单船中层拖网性能的显著性分析[J]. 海洋渔业, 2007, 29(1): 8-12. doi: 10.3969/j.issn.1004-2490.2007.01.002
    [19]
    黄洪亮, 伍贻惠, 郁岳峰, 等. 减少渔具模型试验误差的方法: CN200510027879. X [P]. 2009-06-03.
    [20]
    FUJIISHI A. Model tests of a high-speed midwater rope trawl for estimating the optimum buoyancy-weight ratio[J]. Nippon Suisan Gakknishi, 1990, 56(12): 2011-2018. doi: 10.2331/suisan.56.2011
    [21]
    弗里德曼. 渔具理论与设计[M]. 候恩淮, 高清廉, 译. 北京: 海洋出版社, 1988: 211-212.
    [22]
    KHALED R, PRIOUR D, BILLARD J Y. Numerical opyimization of trawl energy efficiency taking into account fish distribution[J]. Ocean Engin, 2012, 54: 34-45.
    [23]
    许柳雄. 渔具理论与设计[M]. 北京: 中国农业出版社, 2004: 112-113.
    [24]
    大沢要一, 小山武夫. 模型网实验にょる曳网の渔具构成に关すに基础研究[J]. 水産工学研究所研究報告, 1987(8): 187-213.
    [25]
    林德芳, 闫永祥, 黄文强, 等. 北海大网目拖网技术试验[J]. 海洋水产研究, 2000, 21(1): 68-72.
    [26]
    冯春雷, 黄洪亮, 周爱忠, 等. 南极磷虾拖网的性能优化分析[J]. 中国水产科学, 2012, 19(4): 662-670.
    [27]
    周爱忠, 冯春雷. 南极磷虾拖网的试验研究[J]. 现代渔业信息, 2011, 26(8): 6-9.
    [28]
    渔轮拖网阻力计算协作组. 机轮双拖网模型系列试验报告[R]. 上海: 上海水产研究所, 1977: 12-18.
    [29]
    王明彦, 项忆军, 徐宝生, 等. 拖网渔具设计的基础研究—Ⅰ[C]//全国水产捕捞学术交流会论文集. 厦门: 中国水产学会, 1990: 80-95.
    [30]
    周爱忠, 张禹, 齐广瑞, 等. 大型中层拖网结构试验[J]. 渔业信息与战略, 2018, 33(2): 125-132.
  • Related Articles

    [1]XIAN Hualin, TANG Changsheng, ZHANG Yangyang, ZHANG Xiaolin, LIAO Zhi, ZHOU Yuqin, XIE Shuye, YAN Xiaojun. Construction of DNA metabarcoding database of zooplankton in Zhoushan sea area based on mitochondrial cytochrome COI and 18S rRNA gene[J]. South China Fisheries Science. DOI: 10.12131/20250014
    [2]WANG Liting, HUANG Jianhua, ZHOU Falin, LI Yundong, JIANG Song, YANG Qibin, JIANG Shigui, SHI Jianzhi, DING Yangyang, YANG Lishi. Effcet of two bacterial species on expression of genes related to immunity and DNA methylation in Penaeus monodon[J]. South China Fisheries Science. DOI: 10.12131/20250026
    [3]MENG Qingmi, MA Lan, CHEN Jiwei, MO Xianyi, YAO Junjie, YANG Li. Food habits study of Mystus guttatus juvenile based on water body analysis and DNA macro barcode technology for stomach contents[J]. South China Fisheries Science, 2024, 20(5): 149-158. DOI: 10.12131/20240065
    [4]CHEN Jing, HUANG Delian, WANG Xuehui, XU Lei, ZHANG Jian, LI Yafang, NING Jiajia, WANG Lianggen, LIU Shuangshuang, LIN Zhaojin, DU Feiyan. Species identification and morphology of fish eggs from Jiangmen coastal waters in spring using DNA barcoding[J]. South China Fisheries Science, 2022, 18(6): 10-18. DOI: 10.12131/20220028
    [5]JIANG Peiwen, LI Min, ZHANG Shuai, CHEN Zuozhi, XU Shannan. Construction of DNA meta-barcode database of fish in Pearl River Estuary based on mitochondrial cytochrome COI and 12S rDNA gene[J]. South China Fisheries Science, 2022, 18(3): 13-21. DOI: 10.12131/20210210
    [6]CHEN Zhi, CAI Xingwei, ZHANG Qingfeng, LI Gaojun, MA Chunlai, SHEN Zhixin. Preliminary construction and comparative analysis of environmental DNA metabarcoding reference database of freshwater fishes in Hainan Island[J]. South China Fisheries Science, 2022, 18(3): 1-12. DOI: 10.12131/20210339
    [7]LU Zhicheng, LI Min, ZHANG Jun, ZHANG Shuai, LI Hongting, JIANG Peiwen, CHEN Xiaolei, CAO Yiting, CHEN Zuozhi. Preliminary study on species composition of fish eggs of Meiji Reef Lagoon in South China Sea based on DNA barcoding[J]. South China Fisheries Science, 2021, 17(6): 12-21. DOI: 10.12131/20210091
    [8]SU Tianfeng, JIANG Shigui. Structure and phylogenetic analysis of mitochondrial DNA control region of genus Trachurus[J]. South China Fisheries Science, 2011, 7(1): 18-25. DOI: 10.3969/j.issn.2095-0780.2011.01.003
    [9]FAN Wujiang, WANG Xiaoqing, YANG Pinhong, XIE Chunhua. Comparison of genomic DNA extraction of Aristichthys nobilis[J]. South China Fisheries Science, 2007, 3(1): 44-47.
    [10]LI Lihao, YU Dahui. Methods for isolating microsatellite DNA loci from genomic DNA and the applications in aquatic animals[J]. South China Fisheries Science, 2006, 2(5): 74-80.

Catalog

    Recommendations
    Comparative study on growth, hepatopancreas and gill histological structure, and enzyme activities oflitopenaeus vannameiunder so42−/cl−stress in low saline water
    HE Zheng et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Study on total artificial reproduction, embryo development and early larva growth of hybrid sturgeon (acipenser baerii♀×a. schrenckii♂)
    HE Huan et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Early pigmented cell development and body color change ofplatax teira
    YU Chuxia et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Investigation on behavioral preferences oflutjanus erythropterusjuvenile towards artificial reef models with different pore shapes and sizes
    JIANG Manju et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Comparative analysis of growth and muscle nutritional components of hybrid snakehead "male snakehead no.1" under different breeding modes#br##br#
    YU Hong et al., FISHERY MODERNIZATION, 2025
    Morphological characteristics of postembryonic early development of the thamnaconus septentrionalis
    ZHU Jinchao et al., PROGRESS IN FISHERY SCIENCES, 2024
    A single-cell time-lapse of mouse prenatal development from gastrula to birth
    Qiu, Chengxiang et al., NATURE, 2024
    Generation of complex bone marrow organoids from human induced pluripotent stem cells
    Frenz-Wiessner, Stephanie et al., NATURE METHODS, 2024
    Relationship between microscale shear modulus, composition, and structure in porcine, canine, and human temporomandibular-joint cartilage: relevance to disease and degeneration
    EUROPEAN CELLS & MATERIALS, 2023
    Preclinical evidence of reno-protective effect of quercetin on acute kidney injury: a meta-analysis of animal studies
    FRONTIERS IN PHARMACOLOGY
    Powered by
    Article views (627) PDF downloads (41) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return