WANG Yongjin, ZHANG Xun, ZHANG Yu, ZHOU Aizhong, LI Ziniu, WANG Shuaijie, LIU Longteng, WANG Lumin. Influence of main structural parameters on performance of bottom trawl with large-size mesh[J]. South China Fisheries Science, 2021, 17(4): 66-73. DOI: 10.12131/20210026
Citation: WANG Yongjin, ZHANG Xun, ZHANG Yu, ZHOU Aizhong, LI Ziniu, WANG Shuaijie, LIU Longteng, WANG Lumin. Influence of main structural parameters on performance of bottom trawl with large-size mesh[J]. South China Fisheries Science, 2021, 17(4): 66-73. DOI: 10.12131/20210026

Influence of main structural parameters on performance of bottom trawl with large-size mesh

More Information
  • Received Date: January 13, 2021
  • Revised Date: March 24, 2021
  • Accepted Date: April 07, 2021
  • Available Online: April 15, 2021
  • To optimize the structure of bottom trawl with lagre-size mesh, we selected a typical domestic single bottom trawl with large mesh as research object. Based on L9(34) orthogonal table, we designed the orthogonal tests including factors such as the ratio of total length of net to perimeter (L/C), the ratio of headline length to groundline length (S1/S2), and the ratio of net body length to total length of nets (Lb/L). Besides, we applied the mean and extreme difference analysis method to detect the influence of above structure parameters on resistance (R), vertical expansion of trawl mouth (H) and energy consumption coefficient (Ce). The results show that with different horizontal expansion, the influence of three factors on R followed an order of L/C>S1/S2 >Lb/L, that on H followed an order of S1/S2>Lb/L>L/C, and that on Ce followed an order of L/C>S1/S2>Lb/L. The L/C of this type of trawl should be relatively smaller than that of trawl with small-size mesh, and the smaller the L/C was, the smaller R would be. Under these conditions, L/C=0.2 was the optimal value when vertical expansion of bottom trawl and energy consumption coefficient were used as indicators. Compared with small-size mesh trawl, S1/S2 should be higher, and the higher the S1/S2 was, the better the vertical expansion of the net mouth would be. Within the range of 0.83–0.99, S1/S2 had no significant impact on the resistance, and S1/S2=0.99 was the optimal value when energy consumption coefficient was taken as the indicator. Lb/L decreased with the increase of mesh size, but the decreasing range gradually reduced. Lb/L=0.65 should be suitable for medium or low speed trawl, while Lb/L=0.75 should be more suitable for high speed and fastly towing.
  • [1]
    张秋华, 程家骅, 徐汉祥, 等. 东海区渔业资源极其可持续利用[M]. 上海: 复旦大学出版社, 2007: 494-494.
    [2]
    陈雪忠, 黄锡昌. 渔具模型试验理论与方法[M]. 上海: 上海科学技术出版社, 2011: 2-5.
    [3]
    万荣, 候恩淮. 拖网的网袖结构对其性能的影响[J]. 海洋湖沼通报, 1992(3): 60-63.
    [4]
    贾长礼, 王文硕, 冯亚库. 拖网网身结构变化对网具性能影响的试验研究[J]. 苏州大学学报, 1998(水产捕捞专辑): 77-81.
    [5]
    陈雪忠, 徐宝生, 项忆军, 等. 底拖网网口垂直扩张的分析研究[C]//中国水产捕捞学术研讨会论文集. 苏州: 苏州大学出版社, 1997: 167-170.
    [6]
    徐鹏翔, 许柳雄, 孟涛, 等. 日韩小网目南极磷虾拖网性能对比分析[J]. 中国水产科学, 2015, 22(4): 837-846.
    [7]
    周爱忠, 冯春雷, 张勋, 等. 调整作业参数对小网目南极磷虾拖网水动力性能的影响[J]. 海洋渔业, 2016, 38(1): 74-82. doi: 10.3969/j.issn.1004-2490.2016.01.010
    [8]
    周爱忠, 张勋, 张禹, 等. 基于正交试验方法的四片式虾拖网结构参数优化[J]. 中国水产科学, 2017, 24(3): 640-647.
    [9]
    李灵智, 陈帅, 杨嘉樑, 等. 南极磷虾四片式小网目中层拖网作业性能分析[J]. 中国水产科学, 2017, 24(4): 893-901.
    [10]
    冯春雷, 刘健, 张禹, 等. 南极磷虾拖网结构优化设计与网具性能试验[J]. 农业工程学报, 2017, 33(7): 75-81. doi: 10.11975/j.issn.1002-6819.2017.07.010
    [11]
    伍贻惠, 郁岳峰, 林淮, 等. 拖网模型试验若干问题的研究[C]//中国水产捕捞学术研讨会论文集. 苏州: 苏州大学出版社, 1997: 27-36.
    [12]
    王明彦, 陈雪忠, 徐宝生. 双船拖网渔具设计参数的研究[J]. 水产学报, 1996, 20(1): 36-45.
    [13]
    许永久, 张敏. 智利竹䇲鱼中层拖网设计参数与作业性能分析[J]. 现代渔业信息, 2009, 24(12): 20-25.
    [14]
    王文硕. 中层拖网工具性能和调整技术的试验[J]. 水产科学, 1995, 14(4): 31-34.
    [15]
    陈雪忠, 郁岳峰, 刘峰, 等. 四片式中层拖网主要部件尺寸变化对其性能的影响[J]. 水产学报, 1997, 3(1): 49-56.
    [16]
    戴天元, 郭献盛, 杨丁言. 大网目底中层拖网模型试验研究[J]. 福建水产, 2001, 11(3): 19-25.
    [17]
    FUJIMORI Y, CHIBA K, OSHIMA T, et al. The influence of warp length on trawl dimension and catch of walleye pollock Theragra chalcogramma in a bottom trawl survey[J]. Fish Sci, 2005, 71(4): 738-747. doi: 10.1111/j.1444-2906.2005.01023.x
    [18]
    冯春雷, 黄洪亮, 陈雪忠. 主要作业参数对单船中层拖网性能的显著性分析[J]. 海洋渔业, 2007, 29(1): 8-12. doi: 10.3969/j.issn.1004-2490.2007.01.002
    [19]
    黄洪亮, 伍贻惠, 郁岳峰, 等. 减少渔具模型试验误差的方法: CN200510027879. X [P]. 2009-06-03.
    [20]
    FUJIISHI A. Model tests of a high-speed midwater rope trawl for estimating the optimum buoyancy-weight ratio[J]. Nippon Suisan Gakknishi, 1990, 56(12): 2011-2018. doi: 10.2331/suisan.56.2011
    [21]
    弗里德曼. 渔具理论与设计[M]. 候恩淮, 高清廉, 译. 北京: 海洋出版社, 1988: 211-212.
    [22]
    KHALED R, PRIOUR D, BILLARD J Y. Numerical opyimization of trawl energy efficiency taking into account fish distribution[J]. Ocean Engin, 2012, 54: 34-45.
    [23]
    许柳雄. 渔具理论与设计[M]. 北京: 中国农业出版社, 2004: 112-113.
    [24]
    大沢要一, 小山武夫. 模型网实验にょる曳网の渔具构成に关すに基础研究[J]. 水産工学研究所研究報告, 1987(8): 187-213.
    [25]
    林德芳, 闫永祥, 黄文强, 等. 北海大网目拖网技术试验[J]. 海洋水产研究, 2000, 21(1): 68-72.
    [26]
    冯春雷, 黄洪亮, 周爱忠, 等. 南极磷虾拖网的性能优化分析[J]. 中国水产科学, 2012, 19(4): 662-670.
    [27]
    周爱忠, 冯春雷. 南极磷虾拖网的试验研究[J]. 现代渔业信息, 2011, 26(8): 6-9.
    [28]
    渔轮拖网阻力计算协作组. 机轮双拖网模型系列试验报告[R]. 上海: 上海水产研究所, 1977: 12-18.
    [29]
    王明彦, 项忆军, 徐宝生, 等. 拖网渔具设计的基础研究—Ⅰ[C]//全国水产捕捞学术交流会论文集. 厦门: 中国水产学会, 1990: 80-95.
    [30]
    周爱忠, 张禹, 齐广瑞, 等. 大型中层拖网结构试验[J]. 渔业信息与战略, 2018, 33(2): 125-132.
  • Related Articles

    [1]ZHU Shuli, CHEN Weitao, WU Zhi, XIA Yuguo, YANG Jiping, LI Yuefei, LI Jie. Preliminary investigation of fish diversity in middle and lower reaches of Pearl River based on environmental DNA technology[J]. South China Fisheries Science, 2024, 20(1): 120-129. DOI: 10.12131/20230111
    [2]XIE Yufang, WU Peng, LIU Yong, XIAO Yayuan, TANG Guanglong, WANG Teng, LIN Lin, LI Chunhou. Study on habitat suitability of Coilia mystus in Pearl River Estuary, China[J]. South China Fisheries Science, 2023, 19(1): 22-29. DOI: 10.12131/20220029
    [3]LI Hongting, ZHANG Shuai, ZOU Keshu, CHEN Zuozhi, CHEN Xiaolei, JIANG Peiwen, CAO Yiting, LI Min. Establishment and optimization of environmental DNA extraction method from water of Pearl River Estuary[J]. South China Fisheries Science, 2022, 18(3): 30-37. DOI: 10.12131/20210304
    [4]CHEN Zhi, CAI Xingwei, ZHANG Qingfeng, LI Gaojun, MA Chunlai, SHEN Zhixin. Preliminary construction and comparative analysis of environmental DNA metabarcoding reference database of freshwater fishes in Hainan Island[J]. South China Fisheries Science, 2022, 18(3): 1-12. DOI: 10.12131/20210339
    [5]XIONG Pengli, CHEN Zuozhi, HOU Gang, ZHANG Shuai, QIU Yongsong, FAN Jiangtao, XU Shannan. Decadal change in biological traits of Collichthys lucidus in Pearl River Estuary[J]. South China Fisheries Science, 2021, 17(6): 31-38. DOI: 10.12131/20210072
    [6]YAN Yali, ZHANG Nan, GUO Huayang, GUO Liang, ZHU Kecheng, LIU Baosuo, ZHANG Dianchang. Species identification and phylogenetic relationship in Siganidae based on DNA barcoding[J]. South China Fisheries Science, 2019, 15(1): 100-105. DOI: 10.12131/20180083
    [7]SHUAI Fangmin, LI Zhiquan, LIU Guowen, LI Xinhui, LI Yuefei, YANG Jiping, LI Jie. Resource status of Japanese eel (Anguilla japonica) in the Pearl River Estuary[J]. South China Fisheries Science, 2015, 11(2): 85-89. DOI: 10.3969/j.issn.2095-0780.2015.02.012
    [8]GAO Yuan, LAI Zini, WANG Chao, PANG Shixun, WEI Taili, XIE Wenping, YANG Wanling. Community characteristics of zooplankton in Pearl River Estuary in summer of 2006[J]. South China Fisheries Science, 2008, 4(1): 10-15.
    [9]WANG Di, LIN Zhaojin. Spatial and temporal variations of fish community structure in the Pearl River Estuary waters[J]. South China Fisheries Science, 2006, 2(4): 37-45.
    [10]YANG Lin, ZHANG Xufeng, ZHANG Peng, TAN Yongguang. Composition of by-catch of shrimping beam trawl in the Pearl River Estuary, China[J]. South China Fisheries Science, 2005, 1(1): 27-34.
  • Cited by

    Periodical cited type(11)

    1. 郭瑶杰,万武波,王海山,叶乐,陈治. 3组常用鱼类eDNA宏条形码通用引物对三亚水环境样品的物种检出效果比较. 南方水产科学. 2025(01): 66-76 . 本站查看
    2. 薛向平,孙朝徽,刘霞,惠筠,李学军,李秀启,司飞. 基于COI基因的黄河河南-山东段鲤群体遗传结构分析. 淡水渔业. 2025(02): 43-52 .
    3. 朱书礼,陈蔚涛,武智,夏雨果,杨计平,李跃飞,李捷. 基于环境DNA技术的珠江中下游鱼类多样性初步研究. 南方水产科学. 2024(01): 120-129 . 本站查看
    4. 于耀鲜,邢冉冉,邓婷婷,王琳,卢思远,王宏勋,王丽梅,陈颖. 基于重组酶介导等温扩增-CRISPR/Cas12a的青鱼物种快速鉴定研究. 食品安全质量检测学报. 2024(04): 40-48 .
    5. 徐颖琪,梁绪虹,陈新军,宋成辉,彭祖焜,王丛丛. 基于COⅠ基因构建西北太平洋常见鱼类DNA条形码参考数据库. 上海海洋大学学报. 2024(04): 823-835 .
    6. 张浩博,王晓艳,陈治,钟兰萍,高天翔. 基于环境DNA metabarcoding的舟山及其邻近海域鱼类空间分布格局的初步研究. 水产学报. 2024(08): 125-138 .
    7. 李筱芹,吴开阳,倪达富,杨丽亚,鲁桃秀,张连博,邓华堂,吴彤飞,何荣超,付梅,姚维志,吕红健. 基于环境DNA技术的梯级水坝对长江上游重要支流鱼类多样性的影响研究——以綦江为例. 生态学报. 2024(19): 8865-8883 .
    8. 陈炳耀,信誉,路方婷,孙婧,刘杉,李敏,吴斌,王崇瑞,张衡,周玉香,白玲. 长江江豚监测现状及展望. 中国环境监测. 2023(02): 1-10 .
    9. 陈治,蔡杏伟,申志新,张清凤,李芳远,谷圆,李高俊,赵光军,王镇江. 海南岛淡水鱼类eDNA宏条形码COⅠ通用引物的筛选. 渔业科学进展. 2023(06): 40-57 .
    10. 刘乙蒙,刘洋,刘必林,俞晔伟,宋成辉,王丛丛. Cyt b和12S rRNA基因条形码在灯笼鱼科鱼类物种鉴定中的应用. 中国水产科学. 2023(09): 1112-1126 .
    11. 蒋佩文,李敏,张帅,陈作志,徐姗楠. 基于环境DNA宏条码和底拖网的珠江河口鱼类多样性. 水生生物学报. 2022(11): 1701-1711 .

    Other cited types(5)

Catalog

    Article views (612) PDF downloads (39) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return