CHEN Zhi, CAI Xingwei, ZHANG Qingfeng, LI Gaojun, MA Chunlai, SHEN Zhixin. Preliminary construction and comparative analysis of environmental DNA metabarcoding reference database of freshwater fishes in Hainan Island[J]. South China Fisheries Science, 2022, 18(3): 1-12. DOI: 10.12131/20210339
Citation: CHEN Zhi, CAI Xingwei, ZHANG Qingfeng, LI Gaojun, MA Chunlai, SHEN Zhixin. Preliminary construction and comparative analysis of environmental DNA metabarcoding reference database of freshwater fishes in Hainan Island[J]. South China Fisheries Science, 2022, 18(3): 1-12. DOI: 10.12131/20210339

Preliminary construction and comparative analysis of environmental DNA metabarcoding reference database of freshwater fishes in Hainan Island

More Information
  • Received Date: November 09, 2021
  • Revised Date: December 25, 2021
  • Accepted Date: February 04, 2022
  • Available Online: February 20, 2022
  • In order to determine the optimal reference database and target genes for environmental DNA study of freshwater fishes in Hainan Island, we compared the species coverage, annotation accuracy and threshold values of interspecific difference of COI, 12S and 16S between the self-built database and the public database. The results show that: 1) Seventy-two fish species were collected, among which 16 (COI), 20 (12S) and 22 (16S) species' reference sequences were provided for the first time. 2) Only 68.06% (COI), 66.67% (12S) and 69.44% (16S) of the fish had high similarity sequence in the public database. 3) The annotation accuracy based on the self-built database was significantly higher than that on the public database (COI: 100% vs 69.64%; 12S: 96.15% vs 67.30%; 16S: 96% vs 70%). 4) COI gene was the best target gene for identifying freshwater fishes in Hainan Island, followed by 16S gene. 5) The threshold values of interspecific difference based on K2P genetic distance were 0.006 9 (COI), 0.005 6 (12S) and 0.007 5 (16S), respectively, and the accuracy rates were 94.96% (COI), 89.05% (12S) and 92.70% (16S), respectively. This study reveals that the sequence annotation accuracy of the self-built database is significantly higher than that of the public database, and it is suggested that COI and 16S should be used as the environmental DNA metabarcoding genes of freshwater fishes in Hainan Island.
  • [1]
    程馨雨, 陶捐, 武瑞东, 等. 淡水鱼类功能生态学研究进展[J]. 生态学报, 2019, 39(3): 810-822.
    [2]
    THOMSEN P F, WILLERSLEV E. Environmental DNA: an emerging tool in conservation for monitoring past and present biodiversity[J]. Biol Conserv, 2015, 183(1): 4-18.
    [3]
    陈炼, 吴琳, 刘燕, 等. 环境DNA metabarcoding及其在生态学研究中的应用[J]. 生态学报, 2016, 36(15): 4573-4582.
    [4]
    姜维, 赵虎, 邓捷, 等. 环境DNA分析技术——一种水生生物调查新方法[J]. 水生态学杂志, 2016, 37(5): 1-7.
    [5]
    BALASINGHAM K D, WALTER R P, MANDRAK N E, et al. Environmental DNA detection of rare and invasive fish species in two Great Lakes tributaries[J]. Mol Ecol, 2018, 27(1): 112-127. doi: 10.1111/mec.14395
    [6]
    THOMSEN P F, KIELGAST J, IVERSEN L L, et al. Monitoring endangered freshwater biodiversity using environmental DNA[J]. Mol Ecol, 2012, 21(11): 2565-2573. doi: 10.1111/j.1365-294X.2011.05418.x
    [7]
    SCHENEKAR T, SCHLETTERER M, LECAUDEY L A, et al. Reference databases, primer choice, and assay sensitivity for environmental metabarcoding: lessons learnt from a re-evaluation of an eDNA fish assessment in the Volga headwaters[J]. River Res Appl, 2020, 36(7): 1004-1013. doi: 10.1002/rra.3610
    [8]
    VALENTINI A, TABERLET P, MIAUD C, et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding[J]. Mol Ecol, 2016, 25(4): 929-942. doi: 10.1111/mec.13428
    [9]
    李晗溪, 黄雪娜, 李世国, 等. 基于环境DNA-宏条形码技术的水生生态系统入侵生物的早期监测与预警[J]. 生物多样性, 2019, 27(5): 491-504.
    [10]
    JI Y, ASHTON L, PEDLEY S M, et al. Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding[J]. Ecol Lett, 2013, 16(10): 1245-1257. doi: 10.1111/ele.12162
    [11]
    SATO Y, MIYA M, FUKUNAGA T, et al. MitoFish and MiFish pipeline: a mitochondrial genome database of fish with an analysis pipeline for environmental DNA metabarcoding[J]. Mol Biol Evol, 2018, 35(6): 1553-1555. doi: 10.1093/molbev/msy074
    [12]
    徐念, 常剑波. 长江中下游干流环境DNA样品鱼类物种检测的初步研究[J]. 水生态学杂志, 2016, 27(5): 49-55.
    [13]
    LI Y, EVANS N T, RENSHAW M A, et al. Estimating fish alpha-and beta-diversity along a small stream with environmental DNA metabarcoding[J]. MBMG, 2018, 2(1): e24262.
    [14]
    SHAW J L A, CLARKE L J, WEDDERBURN S D, et al. Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system[J]. Biol Conserv, 2016, 197(4): 131-138.
    [15]
    SHU L, LUDWIG A, PENG Z G. Environmental DNA metabarcoding primers for freshwater fish detection and quantification: in silico and in tanks[J]. Ecol Evol, 2021, 11(3): 8281-8294.
    [16]
    ZHANG S, ZHAO J, YAO M. A comprehensive and comparative evaluation of primers for metabarcoding eDNA from fish[J]. Methods Ecol Evol, 2020, 11(12): 1609-1625. doi: 10.1111/2041-210X.13485
    [17]
    MIYA M, SATO Y, FUKUNAGA T, et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species[J]. Roy Soc Open Sci, 2015, 2(7): 150088. doi: 10.1098/rsos.150088
    [18]
    MILAN D T, MENDES I S, DAMASCENO J S, et al. New 12S metabarcoding primers for enhanced neotropical freshwater fish biodiversity assessment[J]. Sci Rep-UK, 2020, 10(1): 17966. doi: 10.1038/s41598-020-74902-3
    [19]
    邢巧, 史建康, 林彰文, 等. 海南省生物多样性保护战略与行动计划[M]. 北京: 科学出版社, 2015: 7-8.
    [20]
    申志新, 李高俊, 蔡杏伟, 等. 海南省淡水野生鱼类多样性演变及保护建议[J]. 中国水产, 2018(11): 56-60.
    [21]
    李高俊, 顾党恩, 蔡杏伟, 等. 海南岛“两江一河” 淡水土著鱼类的种类组成与分布现状[J]. 淡水渔业, 2020, 50(6): 15-22. doi: 10.3969/j.issn.1000-6907.2020.06.003
    [22]
    中国水产科学研究院珠江水产研究所, 上海水产大学, 中国水产科学研究院东海水产研究所, 等. 海南岛淡水及河口鱼类志 [M]. 广州: 广东科技出版社, 1986: 1-372.
    [23]
    中国水产科学研究院珠江水产研究所, 华南师范大学, 暨南大学, 等. 广东淡水鱼类志 [M]. 广州: 广东科技出版社, 1991: 1-561.
    [24]
    VENCES M, LYRA M L, PERL R G B, et al. Freshwater vertebrate metabarcoding on Illumina platforms using double-indexed primers of the mitochondrial 16S rRNA gene[J]. Conserv Genet Resour, 2016, 8(3): 323-327. doi: 10.1007/s12686-016-0550-y
    [25]
    吴娜. 南海鱼类凭证标本采集及DNA条形码库构建与应用 [D]. 上海: 上海海洋大学, 2017: 13-16.
    [26]
    梁日深, 唐丰寿, 何浩斌, 等. 西太平洋沿海石斑鱼属鱼类DNA条形码及分子系统进化研究[J]. 水生生物学报, 2021, 45(4): 851-860. doi: 10.7541/2021.2020.080
    [27]
    郜星晨, 姜伟. 三峡库区常见鱼类DNA条形码本地BLAST数据库的构建和应用 [J]. 基因组学与应用生物学, 2021, 40(5/6): 1952-1960.
    [28]
    JERDE C L, MAHON A R, CAMPBELL T, et al. Are genetic reference libraries sufficient for environmental DNA metabarcoding of Mekong River basin fish?[J]. Water-SUI, 2021, 13(13): 01767.
    [29]
    LIM N K M, TAY Y C, SRIVATHSAN A, et al. Next-generation freshwater bioassessment: eDNA metabarcoding with a conserved metazoan primer reveals species-rich and reservoir-specific communities[J]. Roy Soc Open Sci, 2016, 3(11): 160635. doi: 10.1098/rsos.160635
    [30]
    GILLET B, COTTET M, DESTANQUE T, et al. Direct fishing and eDNA metabarcoding for biomonitoring during a 3-year survey significantly improves number of fish detected around a South East Asian reservoir[J]. PLOS ONE, 2018, 13(12): e0208592. doi: 10.1371/journal.pone.0208592
    [31]
    ALAM M J, KIM N K, ANDRIYONO S, et al. Assessment of fish biodiversity in four Korean rivers using environmental DNA metabarcoding[J]. PeerJ, 2020, 8(2): e9508.
    [32]
    MIYA M, GOTOH R O, SADO T. MiFish metabarcoding: a high-throughput approach for simultaneous detection of multiple fish species from environmental DNA and other samples[J]. Fish Sci, 2020, 86(6): 939-970. doi: 10.1007/s12562-020-01461-x
    [33]
    HEBERT P D N, CYWINSKA A, BALL S L, et al. Biological identifications through DNA barcodes[J]. Proc Royal Soc London B, 2003, 270(1512): 313-321. doi: 10.1098/rspb.2002.2218
    [34]
    EVANS N T, LAMBERTI G A. Freshwater fisheries assessment using environmental DNA: a primer on the method, its potential, and shortcomings as a conservation tool[J]. Fish Res, 2018, 197(4): 60-66.
    [35]
    MACHER J N, VIVANCOS A, PIGGOTT J J, et al. Comparison of environmental DNA and bulk-sample metabarcoding using highly degenerate cytochrome c oxidase I primers[J]. Mol Ecol Resour, 2018, 18(6): 1456-1468. doi: 10.1111/1755-0998.12940
    [36]
    GANTNER S, ANDERSSON A F, LAURA A S, et al. Novel primers for 16S rRNA-based archaeal community analyses in environmental samples[J]. J Microbiol Meth, 2011, 84(1): 12-18. doi: 10.1016/j.mimet.2010.10.001
    [37]
    MATHESON H. Review of methods of selective primer-dimer reduction in vitro[J]. Meth Biomol Res, 2009, 31(7): 476-488.
    [38]
    IVANOVA N V, ZEMLAK T S, HANNER R H, et al. Universal primer cocktails for fish DNA barcoding[J]. Mol Ecol Notes, 2007, 7(4): 544-548. doi: 10.1111/j.1471-8286.2007.01748.x
    [39]
    COLLINS R A, BAKKER J, WANGENSTEEN O S, et al. Non-specific amplification compromises environmental DNA metabarcoding with COI[J]. Methods Ecol Evol, 2019, 10(11): 1985-2001. doi: 10.1111/2041-210X.13276
    [40]
    MENNING D, SIMMONS T, TALBOT S. Using redundant primer sets to detect multiple native Alaskan fish species from environmental DNA[J]. Conserv Genet Resour, 2020, 12(1): 109-123. doi: 10.1007/s12686-018-1071-7
    [41]
    JENNINGS W B, RUSCHI P A, FERRARO G, et al. Barcoding the Neotropical freshwater fish fauna using a new pair of universal COI primers with a discussion of primer dimers and M13 primer tails[J]. Genome, 2019, 62(2): 77-83. doi: 10.1139/gen-2018-0145
    [42]
    SULTANA S, ALI M E, HOSSAIN M A M, et al. Universal mini COI barcode for the identification of fish species in processed products[J]. Food Res Int, 2018, 105: 19-28.
    [43]
    YAMAMOTO S, MASUDA R, SATO Y, et al. Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea[J]. Sci Rep-UK, 2017, 7(1): 40368. doi: 10.1038/srep40368
    [44]
    BYLEMANS J, GLEESON D M, HARDY C M, et al. Toward an ecoregion scale evaluation of eDNA metabarcoding primers: a case study for the freshwater fish biodiversity of the Murray-Darling Basin (Australia)[J]. Ecol Evol, 2018, 8(17): 8697-8712. doi: 10.1002/ece3.4387
    [45]
    陈治. 浙江近海鱼类多样性eDNA调查方法的建立与应用 [D]. 青岛: 中国海洋大学, 2019: 149-152.
  • Related Articles

    [1]LUO Yingying, HUANG Hui, LI Laihao, HAO Shuxian, CHEN Shengjun, WEI Ya, CEN Jianwei, XIANG Huan. Quality improvement and mechanism analysis of non-rinsing tilapia surimi gel[J]. South China Fisheries Science, 2025, 21(2): 164-173. DOI: 10.12131/20240238
    [2]CUI Qiaoyan, LI Laihao, CHEN Tianyu, CHEN Shengjun, HUANG Hui, ZHAO Yongqiang, LI Chunsheng. Improvement of gel strength of fermented tilapia surimi by Lactiplantibacillus plantarum through inhibition of protein hydrolysis[J]. South China Fisheries Science, 2024, 20(4): 1-10. DOI: 10.12131/20240060
    [3]WANG Xin, LI Mengzhe, ZHANG Wei, KONG Yunfei, XIONG Zhiyu, SHI Tong, BAO Yulong, YUAN Li, ZHANG Shiyong, WANG Minghua, CHEN Xiaohui, GAO Ruichang. Evaluation of gel properties of heat-induced surimi of Ictalurus punctatus from four genealogies[J]. South China Fisheries Science, 2023, 19(3): 164-172. DOI: 10.12131/20220198
    [4]GE Mengmeng, SHEN Jiandong, TANG Xiaohang, XIA Wenshui, XU Yanshun. Optimization of thermal sterilization process for low-acid and acidified instant laver[J]. South China Fisheries Science, 2022, 18(6): 127-136. DOI: 10.12131/20220003
    [5]QI Bo, YANG Shaoling, WANG Yueqi, HU Xiao, YANG Xianqing, PAN Chuang, LI Laihao, WANG Lunan. Effect of carboxymethyl agar on gel properties of tilapia surimi[J]. South China Fisheries Science, 2022, 18(2): 83-89. DOI: 10.12131/20210311
    [6]LIU Fangfang, LIN Wanling, HAN Yingxue, LI Laihao, LI Chunsheng, YANG Xianqing, ZHOU Wenguo. Basic properties of surimi gel of five freshwater fish[J]. South China Fisheries Science, 2021, 17(2): 114-121. DOI: 10.12131/20200220
    [7]YIN Min, XIE Chongyou, PU Deyong, HUANG Jing, WANG Zhijian. Microstructure of oogenesis in Sinibrama taeniatus[J]. South China Fisheries Science, 2019, 15(2): 127-132. DOI: 10.12131/20180181
    [8]YU Shanshan, WANG Qinglin, DONG Yunwei. Effects of parent acclimation and heat-shock at gastrula on growth and development of sea cucumber larvae[J]. South China Fisheries Science, 2015, 11(4): 46-52. DOI: 10.3969/j.issn.2095-0780.2015.04.007
    [9]ZHANG Yuemei, BAO Yulong, LUO Yongkang, WANG Hang. Changes of biogenic amines and quality indicators of grass carp (Ctenpharyngodon idellus) during chilled storage and effect on biogenic amines during thermal processing[J]. South China Fisheries Science, 2013, 9(4): 56-61. DOI: 10.3969/j.issn.2095-0780.2013.04.010
    [10]HUANG Jiansheng, LU Weihua, ZOU Weili, WANG Yao. Determination of residual polychlorinated biphenyls (PCBs) in blubber of whale by gel permeation chromatography and gas chromatography/mass spectrometry[J]. South China Fisheries Science, 2009, 5(4): 9-12. DOI: 10.3969/j.issn.1673-2227.2009.04.002
  • Other Related Supplements

  • Cited by

    Periodical cited type(11)

    1. 张婷娟,吴风超,周纷. 市售生姜油对白鲢鱼糜凝胶品质特性的影响. 食品科技. 2025(01): 146-153 .
    2. 金铮,于婉莹,赵文宇,刘宇轩,祁立波,白帆,董秀萍. 鲟鱼重组鱼排3D打印特性的研究. 食品与发酵工业. 2024(03): 241-249 .
    3. 步营,程亚佳,厉寒,朱文慧,励建荣,李学鹏,季广仁. 发芽糙米匀浆对带鱼鱼糜凝胶特性的影响. 农业工程学报. 2024(18): 292-301 .
    4. 林雅文,刘佳晨,李艾靑,高月,励建荣,李学鹏. 不同干燥方法对南美白对虾理化特性和微观结构的影响. 食品科学. 2023(19): 74-81 .
    5. 邹怡茜,陈海强,潘卓官,肖苏尧,周爱梅. 超高压耦合热处理对鳙鱼鱼糜凝胶特性和水分迁移的影响. 现代食品科技. 2022(12): 272-280 .
    6. 宋春勇,洪鹏志,周春霞,陈艾霖,冯瑞. 大豆油和预乳化大豆油对金线鱼鱼糜凝胶品质的影响. 食品科学. 2021(08): 90-97 .
    7. 梁雯雯,杨天,郑志红,郭建,陈胜军,汪秋宽,丛海花. 升温方式对二段加热鲢鱼糜水分分布和品质的影响. 大连海洋大学学报. 2021(04): 646-652 .
    8. 刘芳芳,林婉玲,李来好,吴燕燕,杨少玲,黄卉,杨贤庆,林织. 海鲈鱼糜加工及凝胶形成过程中蛋白质的变化机理. 食品科学. 2020(14): 15-22 .
    9. 郑静静,林琳,张艳凌,陆剑锋,姜绍通. 不同解冻方式对熟制小龙虾理化特性的比较分析. 现代食品科技. 2020(09): 188-194+108 .
    10. 李钊,李宁宁,刘玉,赵圣明,康壮丽,朱明明,计红芳,何鸿举,马汉军. 超高压对肌原纤维蛋白结构及其凝胶特性影响的研究进展. 食品与发酵工业. 2020(21): 304-309 .
    11. 王菲,隋好林. 不同水产养殖区福寿鱼的鱼糜凝胶品质研究. 江西水产科技. 2019(06): 10-14 .

    Other cited types(14)

Catalog

    Article views (1193) PDF downloads (173) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return