MA Li, WU Jinying, GAO Songze, SUN Caiyun, LI Wensheng. Study on immunoprotection of eukaryotic expression plasmids of Streptococcus iniae simA and pgmA in Oreochromis niloticus[J]. South China Fisheries Science, 2020, 16(3): 38-46. DOI: 10.12131/20190163
Citation: MA Li, WU Jinying, GAO Songze, SUN Caiyun, LI Wensheng. Study on immunoprotection of eukaryotic expression plasmids of Streptococcus iniae simA and pgmA in Oreochromis niloticus[J]. South China Fisheries Science, 2020, 16(3): 38-46. DOI: 10.12131/20190163

Study on immunoprotection of eukaryotic expression plasmids of Streptococcus iniae simA and pgmA in Oreochromis niloticus

More Information
  • Received Date: August 19, 2019
  • Revised Date: January 05, 2020
  • Accepted Date: February 12, 2020
  • Available Online: February 20, 2020
  • Nile tilapia (Oreochromis niloticus) is an important commercial fish in aquaculture in the world. However, it is easy to be infected by Streptococcus iniae in the breeding production. The use of vaccine is a relatively ideal anti infection measure. In this study, eukaryotic expression vectors (DNA vaccine) were constructed by taking the simA and pgmA genes of S. iniae as the target genes. Then protective efficacy was evaluated by intramuscular injection of tilapia. Two target genes were detected in the injected fish at DNA and RNA levels after immunization. Besides, 7−28 d  after the first immunization, the expression levels of interleukin-1 (IL-1β) and Tumor Necrosis Factor (TNF-α) in the gill, liver, kidney and head kidney of the vaccinal group were higher to some extent than those in the PBS control group. The antibody titer and antibacterial activity of immunized groups were significantly higher than those of control groups (P<0.05). Two weeks after being challenged with S. iniae, the relative percent survival of mixed vaccines of pcDNA3.1-pgmA, pcDNA3.1-simA and pcDNA3.1-pgmA, with pcDNA3.1-simA were 60.7%, 49.9% and 75.0%, respectively. It is revealed that the vaccine prepared in this paper has immune protection effect and can be used as a candidate vaccine.

  • [1]
    MISHRA A, NAM G H, GIM J A, et al. Current challenges of Streptococcus infection and effective molecular, cellular, and environmental control methods in aquaculture[J]. Mol Cells, 2018, 41(6): 495-505.
    [2]
    GAUTHIER D T. Bacterial zoonoses of fishes: a review and appraisal of evidence for linkages between fish and human infections[J]. Vet J, 2015, 203(1): 27-35. doi: 10.1016/j.tvjl.2014.10.028
    [3]
    WEINBERGER D M, TRZCIŃSKI K, LU Y J, et al. Pneumococcal capsular polysaccharide structure predicts serotype prevalence[J]. PLoS Pathog, 2009, 5(6): e1000476. doi: 10.1371/journal.ppat.1000476
    [4]
    LOUIS L, WEINER D B. Rapid synthetic DNA vaccine development for emerging infectious disease outbreaks[M]//ROBERTSON E S. Microbiome and cancer. Current Cancer Research. Cham: Humana Press, 2019: 347-362.
    [5]
    COELHO-CASTELO A A, TROMBONE A P, ROSADA R S, et al. Tissue distribution of a plasmid DNA encoding Hsp65 gene is dependent on the dose administered through intramuscular delivery[J]. Genet Vaccines Ther, 2006, 4(1): 1-10. doi: 10.1186/1479-0556-4-1
    [6]
    NILSSON M, GIVSKOV M, TWETMAN S, et al. Inactivation of the pgmA gene in Streptococcus mutans significantly decreases biofilm-associated antimicrobial tolerance[J]. Microorganisms, 2019, 7(9): 310. doi: 10.3390/microorganisms7090310
    [7]
    SHENG X, GAO J, LIU H, et al. Recombinant phosphoglucomutase and CAMP factor as potential subunit vaccine antigens induced high protection against Streptococcus iniae infection in flounder (Paralichthys olivaceus)[J]. J Appl Microbiol, 2018, 125(4): 997-1007. doi: 10.1111/jam.13948
    [8]
    FISCHETTI V A. Surface proteins on Gram-positive bacteria [M]//FISCHETTI1V A, NOVICK R P, FERRETTI J J, et al. Gram-positive pathogens. Washington D. C.: ASM Press, 2019:19-31.
    [9]
    BAIANO J C F, TUMBOL R A, UMAPATHY A, et al. Identification and molecular characterisation of a fibrinogen binding protein from Streptococcus iniae[J]. BMC Biol, 2008, 8(1): 67-83. doi: 10.1186/1471-213X-8-67
    [10]
    KIM D, BECK B R, LEE S M, et al. Pellet feed adsorbed with the recombinant Lactococcus lactis BFE920 expressing simA antigen induced strong recall vaccine effects against Streptococcus iniae infection in olive flounder (Paralichthys olivaceus)[J]. Fish Shellfish Immunol, 2016, 55: 374-383. doi: 10.1016/j.fsi.2016.06.010
    [11]
    杨成良, 李从荣. 海豚链球菌类M样蛋白基因突变株BY-1ΔsimA的免疫保护作用[J]. 检验医学, 2017, 32(7): 647-651. doi: 10.3969/j.issn.1673-8640.2017.07.021
    [12]
    ANDERSON D P. Adjuvants and immunostimulants for enhancing vaccine potency in fish[J]. Dev Biol Stand, 1997, 90: 257-265.
    [13]
    王雷, 李光友, 毛远兴. 中国对虾血淋巴中的抗菌、溶菌活力与酚氧化酶活力的测定及其特性研究[J]. 海洋与湖沼, 1995, 26(2): 179-185. doi: 10.3321/j.issn:0029-814X.1995.02.010
    [14]
    BOMAN H G, NILSSON-FAYE I, PAUL K, et al. Insect immunity. I. Characteristics of an inducible cell-free antibacterial reaction in hemolymph of Samia cynthia pupae[J]. Infect Immun, 1974, 10(1): 136-145. doi: 10.1128/IAI.10.1.136-145.1974
    [15]
    徐增辉. 罗非鱼海豚链球菌疫苗的研制及免疫效果的初步研究[D]. 南宁: 广西大学, 2008: 47.
    [16]
    CHEN X R, LI L, HU Q B, et al. Expression of dsRNA in recombinant Isaria fumosorosea strain targets the TLR7 gene in Bemisia tabaci[J]. BMC Biotechnol, 2015, 15(1): 64-72. doi: 10.1186/s12896-015-0170-8
    [17]
    TONHEIM T C, LEIRVIK J, LØVOLL M, et al. Detection of supercoiled plasmid DNA and luciferase expression in Atlantic salmon (Salmo salar L.) 535 days after injection[J]. Fish Shellfish Immunol, 2007, 23(4): 867-876. doi: 10.1016/j.fsi.2007.03.015
    [18]
    SETERNES T, TONHEIM T C, LØVOLL M, et al. Specific endocytosis and degradation of naked DNA in the endocardial cells of cod (Gadus morhua L.)[J]. J Exp Biol, 2007, 210(Pt 12): 2091-2103.
    [19]
    张择扬. 四种鸡球虫DNA疫苗在机体组织中的分布和在环境中的释放[D]. 南京: 南京农业大学, 2011: 1.
    [20]
    王蓓, 简纪常, 蔡双虎, 等. 罗非鱼无乳链球菌DNA疫苗的构建及免疫效果研究[J]. 中国海洋大学学报(自然科学版), 2013, 43(12): 30-35.
    [21]
    EMBREGTS C W E, RIGAUDEAU D, TACCHI L, et al. Vaccination of carp against SVCV with an oral DNA vaccine or an insect cells-based subunit vaccine[J]. Fish Shellfish Immunol, 2019, 85: 66-77. doi: 10.1016/j.fsi.2018.03.028
    [22]
    GAM A A, NEVA F A, KROTOSKI W A. Comparative sensitivity and specificity of ELISA and IHA for serodiagnosis of strongyloidiasis with larval antigens[J]. Am J Trop Med Hyg, 1987, 37(1): 157-161. doi: 10.4269/ajtmh.1987.37.157
    [23]
    ALISHAHI M, MOJTABA R A, ZAREI M, et al. Effect of dietary chitosan on immune response and disease resistance in Cyprinus carpio[J]. Iran J Vet Med, 2014, 8(2): 125-133.
    [24]
    DINARELLO C A. Interleukin-1[J]. Rev Infect Dis, 1984, 6(1): 51-95. doi: 10.1093/clinids/6.1.51
    [25]
    TONHEIM T C, BØGWALD J, DALMO R A. What happens to the DNA vaccine in fish? A review of current knowledge[J]. Fish Shellfish Immunol, 2008, 25(1/2): 1-18. doi: 10.1016/j.fsi.2008.03.007
    [26]
    MA Y P, KE H, LIANG Z L, et al. Protective efficacy of cationic-PLGA microspheres loaded with DNA vaccine encoding the sip gene of Streptococcus agalactiae in tilapia[J]. Fish Shellfish Immunol, 2017, 66: 345-353. doi: 10.1016/j.fsi.2017.05.003
    [27]
    HÉLÈNE M, JEAN-CHRISTOPHE G, EMILIE R, et al. How to design the surface of peptide-loaded nanoparticles for efficient oral bioavailability?[J]. Adv Drug Deliv Rev, 2016, 106(Pt B): 320-336.
    [28]
    HADY E L, WALAA E A. In vitro-in vivo evaluation of chitosan-PLGA nanoparticles for potentiated gastric retention and anti-ulcer activity of diosmin[J]. Int J Nanomed, 2019, 14: 7191-7213. doi: 10.2147/IJN.S213836
    [29]
    杨爱琼, 谢勇恩. 结核杆菌多价核酸疫苗在小鼠体内的免疫保护效应研究[J]. 川北医学院学报, 2015, 30(5): 579-582. doi: 10.3969/j.issn.1005-3697.2015.05.01
    [30]
    郑颖. 犬联合多价核酸疫苗的实验免疫研究[J]. 中国人兽共患病学报, 2016, 32(4): 406-411. doi: 10.3969/j.issn.1002-2694.2016.04.017
    [31]
    KAYANSAMRUAJ P, DONG H T, PIRARAT N, et al. Efficacy of α-enolase-based DNA vaccine against pathogenic Streptococcus iniae in Nile tilapia (Oreochromis niloticus)[J]. Aquaculture, 2017, 468: 102-106. doi: 10.1016/j.aquaculture.2016.10.001
    [32]
    LIU C, HU X, CAO Z, et al. Construction and characterization of a DNA vaccine encoding the SagH against Streptococcus iniae[J]. Fish Shellfish Immunol, 2019, 89: 71-75. doi: 10.1016/j.fsi.2019.03.045
    [33]
    INTHASAENG P, UNAJAK S, AREECHON N, et al. Efficacy of pcDNA-Alp1 DNA vaccine against Streptococcus agalactiae in Nile tilapia (Oreochromis niloticus)[J]. Thai J Vet Med, 2018, 48(2): 279-288.
  • Related Articles

    [1]CHEN Feng, LI Guanglüe, CHEN Yanyun, WU Xueping, ZHU Jiajie. Analysis of nutritional composition and quality of muscles in Hemibagrus guttatus, H. macropterus and H. pluriradiatus[J]. South China Fisheries Science. DOI: 10.12131/20240277
    [2]ZHOU Shengjie, YANG Rui, YU Gang, MA Zhenhua, MENG Xiangjun. Muscle composition determination and nutrition evaluation of three tuna species near Meiji Reef[J]. South China Fisheries Science, 2021, 17(2): 51-59. DOI: 10.12131/20200229
    [3]SHEN Yingying, WU Yanyan, LI Laihao, DENG Shanggui. Nutritional components and safety evaluation of fermented mandarin fish[J]. South China Fisheries Science, 2020, 16(3): 103-112. DOI: 10.12131/2090247
    [4]TONG Ling, JIN Yi, XU Kunhua, DAI Zhiyuan. Analysis of nutritional components in back muscle of skipjacks[J]. South China Fisheries Science, 2014, 10(5): 51-59. DOI: 10.3969/j.issn.2095-0780.2014.05.008
    [5]LI Haifeng, CHI Changfeng, WU Changwen. Evaluation of nutritional composition in white egg membrane from cultured Sepiella maindroni[J]. South China Fisheries Science, 2014, 10(3): 86-91. DOI: 10.3969/j.issn.2095-0780.2014.03.013
    [6]HUANG Yanqing, GONG Yangyang, LU Jianxue, HUANG Hongliang, GAO Lujiao. Evaluation of nutritional quality of Antarctic krill meal by different processing methods[J]. South China Fisheries Science, 2013, 9(6): 58-65. DOI: 10.3969/j.issn.2095-0780.2013.06.010
    [7]LIU Banghui, WANG Guangjun, YU Ermeng, XIE Jun, YU Deguang, ANG Haiying, GONG Wangbao. Comparison and evaluation of nutrition composition in muscle of grass carp Ctenopharyngodon idellus fed with broad bean and common compound feed[J]. South China Fisheries Science, 2011, 7(6): 58-65. DOI: 10.3969/j.issn.2095-0780.2011.06.010
    [8]WANG Yin, LIU Shuji, SU Yongchang, HUANG Yu, WU Chengye. Morphological analysis and nutrition evaluation of Paphia undulate[J]. South China Fisheries Science, 2011, 7(6): 19-25. DOI: 10.3969/j.issn.2095-0780.2011.06.004
    [9]LI Guo-zhi, LU Shao-xiong, YAN Da-wei, ZHAO Gui-ying, LI Ming-li. Analysis of biochemical components in muscle and nutritional evaluation of Schizothorax yunnanensis[J]. South China Fisheries Science, 2009, 5(2): 56-62. DOI: 10.3969/j.issn.1673-2227.2009.02.010
    [10]LI Zufu, FU Qianqian, ZHANG Yishun. An analysis of the nutritive composition and the contents of amino acids in muscle of Epinephelus lanceol[J]. South China Fisheries Science, 2008, 4(5): 61-64.
  • Cited by

    Periodical cited type(18)

    1. 孔丽芳,莫飞龙,韦玲静,甘宝江,滕忠作,卢飞麟. 野生马口鱼基本营养成分分析. 水产养殖. 2024(02): 17-22 .
    2. 赵何勇,温守欧,韦玲静,甘宝江,卢玉典,莫飞龙. 三角鲤肌肉营养成分及品质评价. 养殖与饲料. 2024(03): 1-6 .
    3. 刘龙龙,罗鸣,刘洪涛,陈傅晓,韩丽娜. 不同规格野生黄鳍金枪鱼肌肉营养分析与评价. 渔业科学进展. 2024(03): 258-267 .
    4. 张凯,张麟,彭凌风,陈鑫,刘合刚,胡志刚. 基于性别差异的少棘巨蜈蚣蛋白组和转录组联合分析. 时珍国医国药. 2024(04): 892-898 .
    5. 钟传艳,彭顺芳,姜雨杰,龙晓文. 人工养殖雌雄光唇裂腹鱼形态学指数和肌肉营养成分的比较. 黑龙江畜牧兽医. 2024(16): 109-115 .
    6. 黄逸中,张思琪,颉志刚. 黄金鲈肌肉氨基酸组成与性别、体重、性腺系数间的关联性分析. 浙江农业科学. 2024(10): 2486-2494 .
    7. 招志杰,韦玲静,刘康,卢玉典,张盛,莫飞龙,杨宾兰. 乌原鲤肌肉营养成分分析与品质评价. 贵州农业科学. 2024(10): 86-92 .
    8. 鲁翠云,罗鸣,郑先虎,刘龙龙,张国庆,刘天奇,陈有铭. 用微卫星标记分析卵形鲳鲹两个繁育群体的遗传结构. 水产学杂志. 2024(05): 28-36+44 .
    9. 王世会,赵志刚,罗亮,张瑞,郭坤,徐伟. 滨海氯化物型盐碱水池塘养殖中华绒螯蟹营养品质分析. 海洋渔业. 2023(05): 579-593 .
    10. 董伟超,王少平,黄莹洁,刘鑫,李喆,张加余,代龙. 基于“化学成分-药效”对比分析的雄土鳖虫成药性评价研究. 时珍国医国药. 2023(10): 2494-2498 .
    11. 卢军浩,李兰兰,权金强,赵桂研,孙军,蒋常平,刘哲. 小瓜虫对虹鳟组织病理变化及TLR信号通路基因表达影响. 农业生物技术学报. 2022(04): 739-750 .
    12. 钟智明,陈家宇,张静,汤保贵,于非非,赖文琪,朱洁雄. 基于代谢组学分析光强胁迫对卵形鲳鲹代谢的影响. 农业生物技术学报. 2022(04): 751-761 .
    13. 常淮阳,史红专,邹洁,王羿,郭丽媛,刘水新. 雌雄地鳖内在品质及营养成分差异研究. 中国中药杂志. 2022(12): 3192-3197 .
    14. 徐永江,王开杰,姜燕,崔爱君,柳学周,方璐,王滨. 三种鰤属鱼类肌肉质构特性及营养成分比较分析. 中国水产科学. 2022(07): 1022-1032 .
    15. 张进伟,胡晓,陈胜军,赵永强,吴燕燕,王悦齐,潘创,王迪. 腌制风干过程中卵形鲳鲹鱼肉性质、蛋白质氧化及游离氨基酸的变化. 食品科学. 2022(18): 272-278 .
    16. 罗辉,陈李婷,敬庭森,孙文波,李哲,周明瑞,覃俊奇,杜雪松,文露婷,潘贤辉,周康奇,樊荟慧,叶华,宾石玉,林勇. 田螺科四种螺的肌肉主要营养成分. 水产学报. 2022(11): 2177-2185 .
    17. 张进伟,胡晓,陈胜军,吴燕燕,王悦齐,潘创,黄卉. 腌制方式对卵形鲳鲹理化指标及其挥发性风味成分的影响. 水产学报. 2021(07): 1066-1079 .
    18. 喻亚丽,李清,何力,甘金华,毛涛,李佩,陈见,孙艳红,魏辉杰,王贵英. 2种产卵类型翘嘴鲌肌肉营养成分分析与评价. 南方农业学报. 2021(12): 3311-3319 .

    Other cited types(9)

Catalog

    Article views (4027) PDF downloads (50) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return