ZHENG Deyu, GUO Yijia, YANG Tianyan, GAO Tianxiang, ZHENG Yao, YUAN Donghao, SI Shujin. Genetic diversity analysis of Sillago japonica based on mitochondrial DNA ND2 gene[J]. South China Fisheries Science, 2019, 15(5): 84-91. DOI: 10.12131/20190042
Citation: ZHENG Deyu, GUO Yijia, YANG Tianyan, GAO Tianxiang, ZHENG Yao, YUAN Donghao, SI Shujin. Genetic diversity analysis of Sillago japonica based on mitochondrial DNA ND2 gene[J]. South China Fisheries Science, 2019, 15(5): 84-91. DOI: 10.12131/20190042

Genetic diversity analysis of Sillago japonica based on mitochondrial DNA ND2 gene

More Information
  • Received Date: February 24, 2019
  • Revised Date: April 23, 2019
  • Available Online: May 30, 2019
  • A total of 119 individuals of Sillago japonica were collected from six sampling sites (Laizhou, Jiaonan, Zhoushan, Xiamen, Shantou and Beihai). The length of 450 bp NADH dehydrogenase subunit 2 (ND2) gene fragment was amplified and sequenced. No base insertion or deletion mutations occurred and 77 mutation sites were detected, including 30 parsimony informative sites and 28 singleton polymorphic sites. Sixty-one haplotypes were defined in 119 sequences. The average haplotype diversity (Hd) and nucleotide diversity (π) were 0.945 3±0.015 5 and 0.009 718±0.005 445, respectively. The average genetic distance among the six populations was 0.008 3, and the genetic differentiation index FST value was less than 0.05, indicating no significant genetic differentiation among the populations. Analysis of molecular variance (AMOVA) shows that genetic variation of S. japonica mainly resided among individuals within populations (99.96%). The neutral tests (Tajima's D and Fu's Fs) were both negative and deviated from the neutral significantly. Besides, the nucleotide mismatches distribution showed a unimodal distribution, indicating that S. japonica had experienced population expansion in history. The estimated expansion time was about 0.12−0.29 million years ago in late Pleistocene.
  • [1]
    NELSON J S. Fishes of the world[M]. New Jersey: John Wiley & Sons, 2016: 503.
    [2]
    MCKAY R J. An annotated and illustrated catalogue of the sillago, smelt or Indo-Pacific whiting species known to date[R]. Rome: FAO, 1992: 1-83.
    [3]
    SANO J. Fisheries management by spawning per recruit analysis and yield per recruit analysis for Sillago japonica around the coastal waters of Itoshima [Japan] area[R]. Bulletin of Fukuoka Fisheries & Marine Technology Research Center, Fukuoka, 2004: 46-47.
    [4]
    SHIMASAKI Y, OSHIMA Y, INOUE S, et al. Effect of tributyltin on reproduction in Japanese whiting, Sillago japonica[J]. Mar Environ Res, 2006, 62(S): S245-S248.
    [5]
    OOZEKI Y, HWANG P P, HIRANO R. Larval development of the Japanese whiting, Sillago japonica[J]. Jpn J Ichthyol, 1992, 39(1): 59-66.
    [6]
    KASHIWAGI M, KONDO S, YOSHIDA W, et al. Effects of temperature and salinity on hatching success of Japanese whiting Sillago japonica eggs[J]. Suisan Zoshoku, 2000, 48(4): 637-642.
    [7]
    SULISTIONO S, WATANABE S, YOKOTA M. Reproduction of the Japanese whiting, Sillago japonica, in Tateyama Bay[J]. Aquacult Sci, 1999, 47(2): 209-214.
    [8]
    RAHMAN S M, MAJHI S K, SUZUKI T A, et al. Suitability of cryoprotectants and impregnation protocols for embryos of Japanese whiting Sillago japonica[J]. Cryobiology, 2008, 57(2): 170-174. doi: 10.1016/j.cryobiol.2008.08.002
    [9]
    RAHMAN S M, STRUESSMANN C A, SUZUKI T, et al. Electroporation enhances permeation of cryoprotectant (dimethyl sulfoxide) into Japanese whiting (Sillago japonica) embryos[J]. Theriogenology, 2013, 79(5): 853-858. doi: 10.1016/j.theriogenology.2013.01.002
    [10]
    SULISTIONO S, YOKOTA M, KITADA S, et al. Age and growth of Japanese whiting Sillago japonica in Tateyama Bay[J]. Fish Sci, 1999, 65(1): 117-122.
    [11]
    ARAYAMA K, IMAI H, KOHNO H, et al. Early life story of Japanese whiting Sillago japonica occurring in the surf zone of sandy beaches Tateyama Bay, central Japan[J]. Nippon Suisan Gakkaishi, 2003, 69(3): 359-367. doi: 10.2331/suisan.69.359
    [12]
    杨亚峰, 宋娜, 肖家光, 等. 莱州湾少鳞的形态特征描述[J]. 齐鲁渔业, 2016, 33(10): 8-10.
    [13]
    潘晓哲, 高天翔. 基于耳石形态的属鱼类鉴别[J]. 动物分类学报, 2010, 35(4): 799-805.
    [14]
    薛泰强, 杜宁, 高天翔. 基于线粒体COI及Cytb基因的4种科鱼类系统发育研究[J]. 中国海洋大学学报(自然科学版), 2010, 40(S1): 91-98.
    [15]
    肖家光. 基于线粒体基因组全序列的属鱼类系统发育研究[D]. 青岛: 中国海洋大学, 2015: 44-53.
    [16]
    GAO T X, YANG T Y, YANAGIMOTO T, et al. Levels and patterns of genetic variation in Japanese whiting (Sillago japonica) based on mitochondrial DNA control region[J]. Mitochondrial DNA Pt A, 2019, 30(1): 172-183. doi: 10.1080/24701394.2018.1467411
    [17]
    王林燕. 基于微卫星标记的中国和少鳞群体遗传学研究[D]. 青岛: 中国海洋大学, 2014: 36-64.
    [18]
    VELLEND M, GEBER M A. Connections between species diversity and genetic diversity[J]. Ecol Lett, 2005, 8(7): 767-781. doi: 10.1111/ele.2005.8.issue-7
    [19]
    JUAN Y, ZHONG Z Q, FEN L. Mitochondrial DNA and its application to the molecular population genetics of fish[J]. Ecol Sci, 2008, 27(4): 272-276.
    [20]
    WILSON A C, CANN R L, CARR S M, et al. Mitochondrial DNA and two perspectives on evolutionary genetics[J]. Biol J Linn Soc, 2010, 26(4): 375-400.
    [21]
    杨喜书, 章群, 余帆洋, 等. 华南6水系与澜沧江-湄公河攀鲈线粒体ND2基因的遗传多样性分析[J]. 南方水产科学, 2017, 13(3): 43-50. doi: 10.3969/j.issn.2095-0780.2017.03.006
    [22]
    阮燕如. 基于线粒体ND2基因序列的华南地区斑鳢遗传多样性研究[D]. 广州: 暨南大学, 2014: 52-53.
    [23]
    伊西庆. 中国东部6个大型湖泊翘嘴鲌(Culter alburnus)遗传多样性的线粒体ND2基因序列分析[D]. 广州: 暨南大学, 2009: 31-35.
    [24]
    GEORGE A L, CALDIERARO J B, CHARTRAND K M. Population genetics of the blue shiner, Cyprinella caerulea[J]. Southeast Nat, 2008, 7(4): 637-650. doi: 10.1656/1528-7092-7.4.637
    [25]
    VERISSIMO A, MCDOWELL J R, GRAVES J E. Genetic population structure and connectivity in a commercially exploited and wide-ranging deepwater shark, the leafscale gulper (Centrophorus squamosus)[J]. Mar Freshw Res, 2012, 63(6): 505-512. doi: 10.1071/MF11237
    [26]
    SAMBROOK J, FRITSCH E F, MANIATIS T. Molecular cloning: a laboratory manual[M]. New York: Cold Spring Harbor Laboratory Press, 1982: 76-82.
    [27]
    CLEWLEY J P. Macintosh sequence analysis software. DNAStar's LaserGene[J]. Mol Biotechnol, 1995, 3(3): 221-224. doi: 10.1007/BF02789332
    [28]
    ROZAS J, FERRERMATA A, SÁNCHEZDELBARRIO J C, et al. DnaSP 6: DNA sequence polymorphism analysis of large datasets[J]. Mol Biol Evol, 2017, 34(12): 3299-3302. doi: 10.1093/molbev/msx248
    [29]
    EXCOFFIER L, LISCHER H E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows[J]. Mol Ecol Resour, 2010, 10(3): 564-567. doi: 10.1111/men.2010.10.issue-3
    [30]
    KUMAR S, STECHER G, TAMURA K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Mol Biol Evol, 2016, 33(7): 1870-1874. doi: 10.1093/molbev/msw054
    [31]
    ROGERS A R, HARPENDING H. Population growth makes waves in the distribution of pairwise genetic differences[J]. Mol Biol Evol, 1992, 9(3): 552-569.
    [32]
    BERMINGHAM E S, MCCAFFERTY A. Molecular systematics of fishes[M]. New York: Academic Press, 1997: 113-126.
    [33]
    FERGUSON J H. On the use of genetic divergence for identifying species[J]. Biol J Linn Soc, 2015, 75(4): 509-516.
    [34]
    SKIBINSKI D F. DNA tests of neutral theory: applications in marine genetics[M]. Berlin: Springer Netherlands, 2000: 137-152.
    [35]
    FU Y X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection[J]. Genetics, 1997, 147(2): 915-925.
    [36]
    BONIN A, NICOLE F, POMPANON F, et al. Population adaptive index: a new method to help measure intraspecific genetic diversity and prioritize populations for conservation[J]. Conserv Biol, 2007, 21(3): 697-708. doi: 10.1111/cbi.2007.21.issue-3
    [37]
    NEI M. Molecular evolutionary genetics[M]. New York: Columbia University Press,1987: 92-145.
    [38]
    王秀亮. 玉筋鱼群体遗传多样性及其适应进化研究[D]. 舟山: 浙江海洋大学, 2017: 24-25.
    [39]
    XU S Y, SUN D R, SONG N, et al. Local adaptation shapes pattern of mitochondrial population structure in Sebastiscus marmoratus[J]. Environ Biol Fish, 2017, 100(7): 763-774. doi: 10.1007/s10641-017-0602-5
    [40]
    WRIGHT S. Evolution and the genetics of populations[M]. Chicago: University of Chicago Press, 1968: 76-79.
    [41]
    HEWITT G M. Genetic consequences of climatic oscillations in the quaternary[J]. Philos T R Soc B, 2004, 359(1442): 183-195. doi: 10.1098/rstb.2003.1388
    [42]
    刘海松. 地貌学及第四纪地质学[M]. 北京: 地质出版社, 2013: 10-11.
    [43]
    沈浪, 陈小勇, 李媛媛. 生物冰期避难所与冰期后的重新扩散[J]. 生态学报, 2002, 22(11): 1983-1990. doi: 10.3321/j.issn:1000-0933.2002.11.026
  • Related Articles

    [1]LI Jiangtao, ZHANG Yanqiu, ZHANG Hong, LIU Chun, QIU Xiaolong, CHEN Ming, FANG Junchao, QIU Xiaotong, LIN Li, LYU Xiaojing. Effects of density stress on swimming behavior and muscle energy metabolism of Micropterus salmoides[J]. South China Fisheries Science, 2024, 20(2): 102-110. DOI: 10.12131/20230176
    [2]BAO Junjie, WANG Yongjie, CHEN Honglian, SUN Wen, ZHANG Jing, ZHOU Beibei. Untargeted metabolomics analysis of metabolic differences of crayfish (Procambarus clarkii)  meat with different diets[J]. South China Fisheries Science, 2023, 19(5): 104-112. DOI: 10.12131/20230055
    [3]CHEN Zhizhao, ZHU Tao, LEI Caixia, JIANG Peng, DU Jinxing, ZHU Junjie, SONG Hongmei, LI Shengjie. Effects on growth and hepatic glucose metabolism of grass carp fed with high dietary carbohydrates[J]. South China Fisheries Science, 2023, 19(5): 75-85. DOI: 10.12131/20230020
    [4]LIU Jiaxing, GUO Huayang, ZHU Kecheng, LIU Baosuo, ZHANG Nan, XIAN Lin, ZHANG Dianchang. Effects of cysteine addition to low-fishmeal diets on metabolism of lipid and protein in juvenile Trachinotus ovatus[J]. South China Fisheries Science, 2023, 19(4): 116-125. DOI: 10.12131/20230030
    [5]CHEN Li, XU Jiaxin, LI Liujia, ZHAO Chengfa, LONG Xiaowen. Effects of dietary fishmeal replacement by Periplaneta americana meal on biochemical indexes, disease resistance and metabolomics of juvenile Oncorhynchus mykiss[J]. South China Fisheries Science, 2023, 19(4): 86-97. DOI: 10.12131/20220208
    [6]LIU Guangxin, DONG Yanjun, ZHAO Lijuan, DENG Yiqin, CHENG Changhong, MA Hongling, JIANG Jianjun, FENG Juan, GUO Zhixun, LIN Li. Sequencing of whole genome of Bacillus velezensis LG37 and screening of inorganic nitrogen metabolism candidate genes[J]. South China Fisheries Science, 2022, 18(3): 57-67. DOI: 10.12131/20210149
    [7]ZHANG Guilin, ZHANG Yating, JIANG Hong, LIU Zhen, MAO Xiangzhao. Metabolic engineering synthesis of neoxanthin, a key precursor of fucoxanthin[J]. South China Fisheries Science, 2022, 18(2): 57-65. DOI: 10.12131/20210316
    [8]SUN Caiyun, DONG Hongbiao, WANG Wenhao, LI Yong, GU Qunhong, DUAN Yafei, ZHANG Jiasong, XU Xiaodong. Effects of glycerol monolaurate on lipid metabolism of Lateolabrax maculatus[J]. South China Fisheries Science, 2021, 17(1): 67-75. DOI: 10.12131/20200130
    [9]CHEN Zicong, CHEN Pimao, YUAN Huarong, FENG Xue, TONG Fei, ZHANG Haoming. Study on respiratory metabolism changes of juvenile Penaeus monodon following strenuous activity[J]. South China Fisheries Science, 2020, 16(4): 75-83. DOI: 10.12131/20200017
    [10]LIU Yong, SHI Kuntao, ZHANG Shaohua, YUAN Yongdang. Advancement of respiratory metabolism study in bivalve mollusus[J]. South China Fisheries Science, 2007, 3(4): 65-69.
  • Cited by

    Periodical cited type(20)

    1. 田思泉,柳晓雪,花传祥,王寅,杜涣洋. 南海渔业资源状况及其管理挑战. 上海海洋大学学报. 2024(03): 786-798 .
    2. 刘子凯,许友伟,蔡研聪,孙铭帅,张魁,陈作志. 基于长度数据的南海北部深水金线鱼资源评估. 南方水产科学. 2024(04): 24-33 . 本站查看
    3. 张曼,王雪辉,王淼娣,杜飞雁,孙典荣,王亮根,王跃中,许柳雄,邱永松. 基于长度贝叶斯生物量估算法的北部湾带鱼资源评估. 海洋学报. 2022(01): 11-21 .
    4. 李亚男,杨炳忠,张鹏,李杰,王腾,晏磊. 南海北部拖网对蓝圆鲹的选择性研究. 南方水产科学. 2022(03): 170-176 . 本站查看
    5. 史登福,张魁,蔡研聪,许友伟,孙铭帅,徐姗楠,朱江峰,陈作志. 数据有限条件下珠江口棘头梅童鱼资源状况评估. 海洋渔业. 2022(04): 435-445 .
    6. 崔明远,田思泉,麻秋云,范青松. 基于单位补充量模型的浙江南部海域蓝圆鲹资源评价. 水产科学. 2022(05): 727-737 .
    7. 王薇,陈国宝,牛麓连. 不同捕捞方式下南海北部海域鲹类渔场的时空分布. 广东海洋大学学报. 2022(06): 74-80 .
    8. 粟丽,陈作志,张魁,许友伟,邱永松. 基于底拖网调查数据的渔业资源质量状况评价体系构建——以北部湾为例. 广东海洋大学学报. 2021(01): 10-16 .
    9. 邓裕坚,易木荣,李波,刘思杓,邱康文,沈春燕,何雄波,颜云榕. 北部湾春季多齿蛇鲻生物学特征及其年际变化. 渔业科学进展. 2021(02): 36-44 .
    10. 何雄波,李波,王锦溪,易木荣,康斌,颜云榕. 不同时期北部湾日本带鱼营养生态位差异. 应用生态学报. 2021(02): 683-690 .
    11. 王开立,陈作志,许友伟,孙铭帅,王欢欢,蔡研聪,张魁,徐姗楠. 南海北部近海蓝圆鲹渔业生物学特征研究. 海洋渔业. 2021(01): 12-21 .
    12. 吴新燕,梁宏伟,罗相忠,沙航,邹桂伟. 不同月龄长丰鲢形态性状对体质量的影响. 南方水产科学. 2021(03): 62-69 . 本站查看
    13. 史登福,许友伟,孙铭帅,黄梓荣,陈作志,张魁. 广东海洋渔业资源可捕量评估. 海洋渔业. 2021(05): 521-531 .
    14. 熊朋莉,陈作志,侯刚,张帅,邱永松,范江涛,徐姗楠. 珠江河口棘头梅童鱼生物学特征的年代际变化. 南方水产科学. 2021(06): 31-38 . 本站查看
    15. 朱书礼,李跃飞,武智,李捷,夏雨果,杨计平,李新辉. 基于体长频率数据的西江封开段赤眼鳟可捕规格与资源保护研究. 南方水产科学. 2020(04): 1-7 . 本站查看
    16. 洪小帆,张俊,江艳娥,蔡研聪,杨玉滔,王欢欢,李纲,陈作志. 南海西沙群岛琛航岛犬牙锥齿鲷生物学特征. 生态学杂志. 2020(10): 3320-3331 .
    17. 史登福,张魁,蔡研聪,耿平,许友伟,孙铭帅,陈作志. 南海北部带鱼群体结构及生长、死亡和性成熟参数估计. 南方水产科学. 2020(05): 51-59 . 本站查看
    18. 崔明远,陈伟峰,戴黎斌,麻秋云. 浙江南部海域蓝圆鲹生长异质性及死亡特征. 中国水产科学. 2020(12): 1427-1437 .
    19. 李忠炉,张文旋,何雄波,颜云榕. 南海北部湾秋季蓝圆鲹与竹筴鱼的摄食生态及食物竞争. 广东海洋大学学报. 2019(03): 79-86 .
    20. 王言丰,余景,陈丕茂,于杰,刘祝楠. 北部湾灯光罩网渔场时空分布与海洋环境关系分析. 热带海洋学报. 2019(05): 68-76 .

    Other cited types(13)

Catalog

    Article views (5245) PDF downloads (51) Cited by(33)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return