OU Liguo, LIU Bilin. Sagittae morphology of genus Decapterus from Dongsha Islands in South China Sea[J]. South China Fisheries Science, 2019, 15(3): 33-40. DOI: 10.12131/20180248
Citation: OU Liguo, LIU Bilin. Sagittae morphology of genus Decapterus from Dongsha Islands in South China Sea[J]. South China Fisheries Science, 2019, 15(3): 33-40. DOI: 10.12131/20180248

Sagittae morphology of genus Decapterus from Dongsha Islands in South China Sea

More Information
  • Received Date: November 04, 2018
  • Revised Date: March 03, 2019
  • Accepted Date: March 24, 2019
  • Available Online: March 22, 2019
  • We observed and determined the sagittae morphology of 105 individuals of genus Decapterus (Decapterus macrosoma, D. tabl and D. kurroides) collected from the Dongsha Islands in the South China Sea. The sagittae shape of genus Decapterus was long oval with developed rostrum, and the difference between species was distinct. The front end of D. macrosoma rostrum was slightly bent downward. The knob of otolith dorsal of D. tabl was obviously developed with serrated shape, and the front end of rostrum was slightly broad and thick. The overall outline of D. kurroides otolith was smoother, and antirostrum was poorly developed. According to the morphological indices (otolith length, otolith width, rostrum length, rostrum width, otolith mass and otolith area), the classification of different species of genus Decapterus (D. macrosoma, D. tabl and D. kurroides) achieved success rates of 100%, 100% and 91.7%, respectively. It is shown that sagittae can identify genus Decapterus.

  • [1]
    陈大刚, 张美昭. 中国海洋鱼类[M]. 青岛: 中国海洋大学出版社, 2016: 1081-1084.
    [2]
    国家水产总局南海水产研究所, 厦门水产学院, 中国科学院海洋研究所, 等. 南海诸岛海域鱼类志[M]. 北京: 科学出版社, 1979: 162-163.
    [3]
    麦谷泰雄. 魚類の耳石情報解析に関する研究[J]. 日本水産学会志, 1994, 60(1): 7-11.
    [4]
    廖锐, 区又君. 鱼类耳石研究和应用进展[J]. 南方水产, 2008, 4(1): 69-75. doi: 10.3969/j.issn.2095-0780.2008.01.013
    [5]
    TUSET V M, ROSIN P L, LOMBARTE A. Sagittal otolith shape used in the identification of fishes of the genus Serranus[J]. Fish Res, 2006, 81(2/3): 316-325.
    [6]
    PANELLA G. Fish otoliths: daily growth layers and periodical patterns[J]. Science, 1971, 173(4002): 1124-1127. doi: 10.1126/science.173.4002.1124
    [7]
    朱元鼎, 罗云林, 伍汉霖. 中国石首鱼类分类系统的研究和新属新种的叙述[M]. 上海: 上海科技出版社, 1963: 1-140.
    [8]
    郑文莲. 我国鲹科等鱼类耳石形态的比较研究[C]//鱼类学论文集(第二辑), 北京: 科学出版社, 1981: 39-54.
    [9]
    张国华, 但胜国, 苗志国, 等. 六种鲤科鱼类耳石形态以及在种类和群体识别中的应用[J]. 水生生物学报, 1999, 23(6): 683-688.
    [10]
    郭弘艺, 唐文乔, 魏凯, 等. 中国鲚属鱼类的矢耳石形态特征[J]. 动物学杂志, 2007, 42(1): 39-47. doi: 10.3969/j.issn.0250-3263.2007.01.006
    [11]
    叶振江, 张弛, 王英俊, 等. 中国天竺鲷属鱼类的矢耳石形态特征[J]. 海洋学报(中文版), 2010, 32(5): 87-92.
    [12]
    王英俊, 叶振江, 张弛, 等. 中国海域习见石斑鱼属鱼类矢耳石形态特征[J]. 中国海洋大学学报(自然科学版), 2011(Z1): 55-60.
    [13]
    叶振江, 孟晓梦, 高天翔, 等. 两种花鲈耳石形态的地理差异[J]. 海洋与湖沼, 2007, 38(4): 356-360. doi: 10.3321/j.issn:0029-814X.2007.04.010
    [14]
    王英俊, 叶振江, 杨永桓, 等. 耳石形态在黄海蓝点马鲛群体鉴别方面的应用[J]. 中国海洋大学学报(自然科学版), 2007(S1): 155-158.
    [15]
    于鑫, 曹亮, 南鸥, 等. 基于矢耳石形态分析的凤鲚(Coilia mystus)群体识别研究[J]. 海洋与湖沼, 2013, 44(3): 768-774.
    [16]
    方华华, 高天翔. 耳石形态在斑尾复鰕虎鱼群体鉴别中的研究[J]. 中国农学通报, 2012(29): 92-97. doi: 10.3969/j.issn.1000-6850.2012.29.021
    [17]
    叶振江. 中国海洋鱼类耳石形态学分析及应用研究[D]. 青岛: 中国海洋大学出版社, 2010: 1-216.
    [18]
    张其永, 郑晓敏, 张杰. 闽南-台湾浅滩颌圆鲹种群年龄结构和生长特性的研究[J]. 热带海洋, 1984, 3(4): 26-36.
    [19]
    许成玉, 黄克勤. 东海圆鲹属鱼类外部形态特征的比较研究[J]. 东海海洋, 1983, 1(4): 8-13.
    [20]
    沈世杰, 吴高逸. 台湾鱼类图鉴[M]. 台湾: 国立海洋生物博物馆, 2011: 434-436.
    [21]
    飯塚景記, 片山知史. 日本産硬骨魚類の耳石の外部形態に関する研究[J]. 水研センター研報, 2008(25): 1-222.
    [22]
    REICHENBACHER B, REICHARD M. Otoliths of five extant species of the annual killifish Nothobranchius from the East African Savannah[J]. PLoS One, 2014, 9(11): e0124984.
    [23]
    窦硕增, 于鑫, 曹亮. 鱼类矢耳石形态分析及其在群体识别中的应用实例研究[J]. 海洋与湖沼, 2012, 43(4): 702-712.
    [24]
    TUSET V M, OTERO-FERRER J L, GÓMEZ-ZURITA J, et al. Otolith shape lends support to the sensory drive hypothesis in rockfishes[J]. J Evol Biol, 2016, 29(10): 2083-2097. doi: 10.1111/jeb.2016.29.issue-10
    [25]
    VIGNON M. Ontogenetic trajectories of otolith shape during shift in habitat use: interaction between otolith growth and environment[J]. J Exp Mar Biol Ecol, 2012, 420: 26-32.
    [26]
    NOLF D. A survey of Perciform otoliths and their interest for phylogenetic analysis, with an iconographic synopsis of the Percoidei[J]. Bull Mar Sci, 1993, 52(1): 220-239.
    [27]
    BARDARSON H, MCADAM B J, THORSTEINSSON V, et al. Otolith shape differences between ecotypes of Icelandic cod (Gadus morhua) with known migratory behaviour inferred from data storage tags[J]. Can J Fish Aquat Sci, 2017, 74(12): 2122-2130. doi: 10.1139/cjfas-2016-0307
    [28]
    张立, 李渊, 林龙山, 等. 南海中南部主要经济种类渔业资源声学评估[J]. 海洋渔业, 2016, 38(6): 577-587. doi: 10.3969/j.issn.1004-2490.2016.06.003
    [29]
    PÁEZ D J, HEDGER R, BERNATCHEZ L, et al. The morphological plastic response to water current velocity varies with age and sexual state in juvenile Atlantic salmon, Salmo salar[J]. Freshw Biol, 2008, 53(8): 1544-1554. doi: 10.1111/fwb.2008.53.issue-8
    [30]
    TRACEY S R, LYLE J M, DUHAMEL G. Application of elliptical Fourier analysis of otolith form as a tool for stock identification[J]. Fish Res, 2006, 77(2): 138-147. doi: 10.1016/j.fishres.2005.10.013
    [31]
    CAMPANA S E, CASSELMAN J M. Stock discrimination using otolith shape analysis[J]. Can J Fish Aquat Sci, 1993, 50(5): 1062-1083. doi: 10.1139/f93-123
    [32]
    ASSIS C A. The lagenar otoliths of teleosts: their morphology and its application in species identification, phylogeny and systematics[J]. J Fish Biol, 2003, 62(6): 1268-1295. doi: 10.1046/j.1095-8649.2003.00106.x
    [33]
    王茂林, 张秀梅, 高天翔, 等. 水体钙离子质量浓度对褐牙鲆幼鱼鱼体和耳石元素成分的影响[J]. 南方水产科学, 2013, 9(3): 31-38. doi: 10.3969/j.issn.2095-0780.2013.03.006
    [34]
    王岩, 陈作志, 张俊, 等. 南海北部陆坡海域粗鳞灯笼鱼耳石形态特征[J]. 南方水产科学, 2017, 13(6): 65-72. doi: 10.3969/j.issn.2095-0780.2017.06.008
    [35]
    CAMPANA S E. Otolith science entering the 21st century[J]. Mar Freshw Res, 2005, 56(5): 485-495. doi: 10.1071/MF04147
    [36]
    SMALE M J, HECHT T, WATSON G W. Otolith Atlas of southern African marine fishes[J]. Copeia, 1996, 1(1): 1-253.
    [37]
    MARCUS J, BOWEN W D, EDDINGTON J D. Effects of meal size on otolith recovery from fecal samples of gray and harbor seal pups[J]. Mar Mamm Sci, 1998, 14(4): 789-802. doi: 10.1111/mms.1998.14.issue-4
    [38]
    FITCH J E, BROWNELL J L. Fish otoliths in cetacean stomachs and their importance in interpreting feeding habits[J]. Journal de L'office des Recherches sur les Pêcheries du Canada, 1968, 25(12): 2561-2574.
    [39]
    赵博. 矢耳石形态分析方法及其在石首科鱼类群体判别中应用[D]. 青岛: 中国科学院大学(中国科学院海洋研究所), 2017: 1-78.
    [40]
    宋骏杰. 耳石和听沟形态分析方法及其在三种石首科鱼类群体判别中的应用[D]. 青岛: 中国科学院大学(中国科学院海洋研究所), 2018: 1-100.
    [41]
    BEGG G A, BROWN R W. Stock identification of haddock Melanogrammus aegefinus on Georges Bank based on otolith shape analysis[J]. Trans Am Fish Soc, 2000, 129(4): 935-945. doi: 10.1577/1548-8659(2000)129<0935:SIOHMA>2.3.CO;2
    [42]
    SMITH M K. Regional differences in otolith morphology of the deep slope red snapper Etelis carbunculus[J]. Can J Fish Aquat Sci, 1992, 49(4): 795-804. doi: 10.1139/f92-090
    [43]
    张晓霞, 叶振江, 王英俊, 等. 青岛海域小眼绿鳍鱼耳石形态的初步研究[J]. 中国海洋大学学报(自然科学版), 2009, 39(4): 622-626.
    [44]
    TUSET V M, LOMBARTE A, GONZÁLEZ J A, et al. Comparative morphology of the sagittal otolith in Serranus spp.[J]. J Fish Biol, 2003, 63(6): 1491-1504. doi: 10.1111/jfb.2003.63.issue-6
  • Related Articles

    [1]XIAN Hualin, TANG Changsheng, ZHANG Yangyang, ZHANG Xiaolin, LIAO Zhi, ZHOU Yuqin, XIE Shuye, YAN Xiaojun. Construction of DNA metabarcoding database of zooplankton in Zhoushan sea area based on mitochondrial cytochrome COI and 18S rRNA gene[J]. South China Fisheries Science. DOI: 10.12131/20250014
    [2]WANG Liting, HUANG Jianhua, ZHOU Falin, LI Yundong, JIANG Song, YANG Qibin, JIANG Shigui, SHI Jianzhi, DING Yangyang, YANG Lishi. Effcet of two bacterial species on expression of genes related to immunity and DNA methylation in Penaeus monodon[J]. South China Fisheries Science. DOI: 10.12131/20250026
    [3]MENG Qingmi, MA Lan, CHEN Jiwei, MO Xianyi, YAO Junjie, YANG Li. Food habits study of Mystus guttatus juvenile based on water body analysis and DNA macro barcode technology for stomach contents[J]. South China Fisheries Science, 2024, 20(5): 149-158. DOI: 10.12131/20240065
    [4]CHEN Jing, HUANG Delian, WANG Xuehui, XU Lei, ZHANG Jian, LI Yafang, NING Jiajia, WANG Lianggen, LIU Shuangshuang, LIN Zhaojin, DU Feiyan. Species identification and morphology of fish eggs from Jiangmen coastal waters in spring using DNA barcoding[J]. South China Fisheries Science, 2022, 18(6): 10-18. DOI: 10.12131/20220028
    [5]JIANG Peiwen, LI Min, ZHANG Shuai, CHEN Zuozhi, XU Shannan. Construction of DNA meta-barcode database of fish in Pearl River Estuary based on mitochondrial cytochrome COI and 12S rDNA gene[J]. South China Fisheries Science, 2022, 18(3): 13-21. DOI: 10.12131/20210210
    [6]CHEN Zhi, CAI Xingwei, ZHANG Qingfeng, LI Gaojun, MA Chunlai, SHEN Zhixin. Preliminary construction and comparative analysis of environmental DNA metabarcoding reference database of freshwater fishes in Hainan Island[J]. South China Fisheries Science, 2022, 18(3): 1-12. DOI: 10.12131/20210339
    [7]LU Zhicheng, LI Min, ZHANG Jun, ZHANG Shuai, LI Hongting, JIANG Peiwen, CHEN Xiaolei, CAO Yiting, CHEN Zuozhi. Preliminary study on species composition of fish eggs of Meiji Reef Lagoon in South China Sea based on DNA barcoding[J]. South China Fisheries Science, 2021, 17(6): 12-21. DOI: 10.12131/20210091
    [8]SU Tianfeng, JIANG Shigui. Structure and phylogenetic analysis of mitochondrial DNA control region of genus Trachurus[J]. South China Fisheries Science, 2011, 7(1): 18-25. DOI: 10.3969/j.issn.2095-0780.2011.01.003
    [9]FAN Wujiang, WANG Xiaoqing, YANG Pinhong, XIE Chunhua. Comparison of genomic DNA extraction of Aristichthys nobilis[J]. South China Fisheries Science, 2007, 3(1): 44-47.
    [10]LI Lihao, YU Dahui. Methods for isolating microsatellite DNA loci from genomic DNA and the applications in aquatic animals[J]. South China Fisheries Science, 2006, 2(5): 74-80.

Catalog

    Recommendations
    Comparative study on growth, hepatopancreas and gill histological structure, and enzyme activities oflitopenaeus vannameiunder so42−/cl−stress in low saline water
    HE Zheng et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Study on total artificial reproduction, embryo development and early larva growth of hybrid sturgeon (acipenser baerii♀×a. schrenckii♂)
    HE Huan et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Early pigmented cell development and body color change ofplatax teira
    YU Chuxia et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Investigation on behavioral preferences oflutjanus erythropterusjuvenile towards artificial reef models with different pore shapes and sizes
    JIANG Manju et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Comparative analysis of growth and muscle nutritional components of hybrid snakehead "male snakehead no.1" under different breeding modes#br##br#
    YU Hong et al., FISHERY MODERNIZATION, 2025
    Morphological characteristics of postembryonic early development of the thamnaconus septentrionalis
    ZHU Jinchao et al., PROGRESS IN FISHERY SCIENCES, 2024
    A single-cell time-lapse of mouse prenatal development from gastrula to birth
    Qiu, Chengxiang et al., NATURE, 2024
    Generation of complex bone marrow organoids from human induced pluripotent stem cells
    Frenz-Wiessner, Stephanie et al., NATURE METHODS, 2024
    Relationship between microscale shear modulus, composition, and structure in porcine, canine, and human temporomandibular-joint cartilage: relevance to disease and degeneration
    EUROPEAN CELLS & MATERIALS, 2023
    Preclinical evidence of reno-protective effect of quercetin on acute kidney injury: a meta-analysis of animal studies
    FRONTIERS IN PHARMACOLOGY
    Powered by
    Article views (5852) PDF downloads (74) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return