WANG Xiaodong, LIU Xingguo, GU Zhaojun, ZENG Xianlei, LI Yue, WEI Bu. Effect of aeration on formation of cyanobacterial (Microcystis spp.) blooms[J]. South China Fisheries Science, 2019, 15(2): 29-37. DOI: 10.12131/20180178
Citation: WANG Xiaodong, LIU Xingguo, GU Zhaojun, ZENG Xianlei, LI Yue, WEI Bu. Effect of aeration on formation of cyanobacterial (Microcystis spp.) blooms[J]. South China Fisheries Science, 2019, 15(2): 29-37. DOI: 10.12131/20180178

Effect of aeration on formation of cyanobacterial (Microcystis spp.) blooms

More Information
  • Received Date: August 12, 2018
  • Revised Date: October 07, 2018
  • Accepted Date: December 16, 2018
  • Available Online: December 21, 2018
  • In order to study whether aeration will promote the occurrence of cyanobacterial (Microcystis spp.) blooms in aquaculture ponds, we conducted an experiment (a treatment group and a control group) in a greenhouse during summer, without sediment addition and three replicates of glass tanks. The control group was not aerated, but the treatment group was aerated with common aeration intensity for aquaculture ponds. Inorganic nitrogen and phosphorus nutrients were added to both the control and the treatment groups twice. The initial phytoplankton was dominated by green algae, then Microcystis gradually appeared in both two groups, and then became the most dominant species at later stage of the experiment (average wet mass of 36.28−75.81 mg·L–1). The dissolved oxygen mass concentration in the control was significantly higher than that in the treatment (P<0.05); however, there was no significant difference between both groups (P>0.05), including chlorophylla, total algal wet mass, cyanobacteria wet mass, green algae wet mass, proportion of Microcystis to the total wet mass, as well as zooplankton contents. It is indicated that aeration disturbance in aquaculture ponds has no direct influence on the occurrence of Microcystis dominance, which can appear either at the presence or absence of aeration disturbance, and the aeration disturbance mainly changes the position of Microcystis colonies in the water column.

  • [1]
    JACOBY J M, COLLIER D C, WELCH E B, et al. Environmental factors associated with a toxic bloom of Microcystis aeruginosa[J]. Can J Fish Aquat Sci, 2011, 57(1): 231-240.
    [2]
    WANG X, QIN B, GAO G, et al. Nutrient enrichment and selective predation by zooplankton promote Microcystis (Cyanobacteria) bloom formation[J]. J Plankt Res, 2010, 32(4): 457-470. doi: 10.1093/plankt/fbp143
    [3]
    PAERL H W, OTTEN T G. Harmful cyanobacterial blooms: causes, consequences, and controls[J]. Microb Ecol, 2013, 65(4): 995-1010. doi: 10.1007/s00248-012-0159-y
    [4]
    PAERL H W, HÜISMAN J. Blooms like it hot[J]. Science, 2008, 320(5872): 57-58. doi: 10.1126/science.1155398
    [5]
    O'NEIL J M, DAVIS T W, BURFORD M A, et al. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change[J]. Harmful Algae, 2012, 14: 313-334. doi: 10.1016/j.hal.2011.10.027
    [6]
    JUNGO E, VISSER P M, STROOM J, et al. Artificial mixing to reduce growth of the blue-green alga Microcystis in Lake Nieuwe Meer, Amsterdam: an evaluation of 7 years of experience[J]. Water Sci Technol: Water Supply, 2001, 1(1): 17-23. doi: 10.2166/ws.2001.0003
    [7]
    HUDNELL H K, JONES C, LABISI B, et al. Freshwater harmful algal bloom (FHAB) suppression with solar powered circulation (SPC)[J]. Harmful Algae, 2010, 9(2): 208-217. doi: 10.1016/j.hal.2009.10.003
    [8]
    王艺兵, 储昭升, 曾清如, 等. 扰动对三种典型藻类生长的影响[J]. 生态科学, 2015, 34(5): 77-83.
    [9]
    吴挺峰, 朱广伟, 秦伯强, 等. 前期风场控制的太湖北部湖湾水动力及对蓝藻水华影响[J]. 湖泊科学, 2012, 24(3): 409-415. doi: 10.3969/j.issn.1003-5427.2012.03.012
    [10]
    秦伯强, 杨桂军, 马健荣, 等. 太湖蓝藻水华“暴发”的动态特征及其机制[J]. 科学通报, 2016, 61(7): 759-770.
    [11]
    WU T, QIN B, ZHU G, et al. Dynamics of cyanobacterial bloom formation during short-term hydrodynamic fluctuation in a large shallow, eutrophic, and wind-exposed Lake Taihu, China[J]. Environ Sci Pollut R, 2013, 20(12): 8546-8556. doi: 10.1007/s11356-013-1812-9
    [12]
    ZHU M, PAERL H W, ZHU G, et al. The role of tropical cyclones in stimulating cyanobacterial (Microcystis spp.) blooms in hypertrophic Lake Taihu, China[J]. Harmful Algae, 2014, 39: 310-321. doi: 10.1016/j.hal.2014.09.003
    [13]
    邹锐, 周璟, 孙永健, 等. 垂向水动力扰动机的蓝藻控制效应数值实验研究[J]. 环境科学, 2012, 33(5): 1540-1549.
    [14]
    李大命, 周军, 唐晟凯, 等. 河蟹养殖池塘微囊藻水华毒性及其光合作用活性特征[J]. 湖泊科学, 2015, 27(1): 113-118.
    [15]
    李建松. 淡水池塘蓝藻水体细菌群落结构的研究[D]. 上海: 上海海洋大学, 2016: 1-67.
    [16]
    ZHU G, QIN B, GAO G. Direct evidence of phosphorus outbreak release from sediment to overlying water in a large shallow lake caused by strong wind wave disturbance[J]. Chinese Sci Bull, 2005, 50(6): 577-582.
    [17]
    高永霞, 孙小静, 张战平, 等. 风浪扰动引起湖泊磷形态变化的模拟试验研究[J]. 水科学进展, 2007, 18(5): 668-673. doi: 10.3321/j.issn:1001-6791.2007.05.006
    [18]
    江成. 水体扰动对藻生长机制与QCS水库富营养化控制的影响研究[D]. 上海: 上海交通大学, 2014: 38-91.
    [19]
    王小冬, 秦伯强, 高光. 氮磷的不同供应比例和频度对藻类水华形成的影响[J]. 农业环境科学学报, 2011, 30(12): 2533-2541.
    [20]
    GROSS A, BOYD C E. A digestion procedure for the simultaneous determination of total nitrogen and total phosphorus in pond water[J]. J World Aquacult Soc, 1998, 29(3): 300-303. doi: 10.1111/jwas.1998.29.issue-3
    [21]
    EATON A D, CLESCERI L S, GREENBURG A E. Standard methods for the examination of water and wastewater [M]. 19th ed. Washington, D.C.: American Public Health Association, 1995: 4-91.
    [22]
    LORENZEN C J. Determination of chlorophyll and pheopigments: spectrophotometric equations[J]. Limnol Oceanogr, 1967, 12(2): 343-346. doi: 10.4319/lo.1967.12.2.0343
    [23]
    JESPERSEN A M, CHRISTOFFERSEN K. Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent[J]. Arch Hydrobiol, 1987, 109(3): 445-454.
    [24]
    PALMER C M, MALONEY T E. A new counting slide for nanoplankton[J]. Limnol Oceanogr, 1954, 21(Special Publ): 1-7.
    [25]
    胡鸿钧, 魏印心. 中国淡水藻类——系统、分类及生态[M]. 北京: 科学出版社, 2006: 23-903.
    [26]
    章宗涉, 黄祥飞. 淡水浮游生物研究方法[M]. 北京: 科学出版社, 1991: 252-288.
    [27]
    UNDERWOOD A J. Experiments in ecology: Their logical design and interpretation using analysis of variance[M]. Cambridge: Cambridge University Press, 1997: 189-192.
    [28]
    华锦彪, 宗志祥. 洋河水库“水华”发生的实验研究[J]. 北京大学学报(自然科学版), 1994, 30(4): 476-484.
    [29]
    GHADOUANI A, PINEL-ALLOUL B, PREPAS E E. Effects of experimentally induced cyanobacterial blooms on crustacean zooplankton communities[J]. Freshw Biol, 2003, 48(2): 363-381. doi: 10.1046/j.1365-2427.2003.01010.x
    [30]
    TANG H, XIE P, XIE L, et al. Effect of enclosure and nutrient enrichment on Microcystis blooms in Donghu Lake[J]. Chin J Oceanol Limnol, 2006, 24(3): 278-284. doi: 10.1007/BF02842628
    [31]
    VISSER P M, IBELINGS B W, van der VEER B, et al. Artificial mixing prevents nuisance blooms of the cyanobacterium Microcystis, in Lake Nieuwe Meer, the Netherlands[J]. Freshw Biol, 1996, 36(2): 435-450. doi: 10.1046/j.1365-2427.1996.00093.x
    [32]
    MORENO-OSTOS E, CRUZ-PIZARRO L, BASANTA A, et al. The influence of wind-induced mixing on the vertical distribution of buoyant and sinking phytoplankton species[J]. Aquat Ecol, 2009, 43(2): 271-284. doi: 10.1007/s10452-008-9167-x
    [33]
    李亚春, 谢小萍, 杭鑫, 等. 结合卫星遥感技术的太湖蓝藻水华形成风场特征[J]. 中国环境科学, 2016, 36(2): 525-533. doi: 10.3969/j.issn.1000-6923.2016.02.032
    [34]
    CAO H, KONG F, LUO L, et al. Effects of wind and wind-induced waves on vertical phytoplankton distribution and surface blooms of Microcystis aeruginosa in Lake Taihu[J]. J Freshw Ecol, 2006, 21(2): 231-238. doi: 10.1080/02705060.2006.9664991
    [35]
    HUNTER P D, TYLER A N, WILLBY N J, et al. The spatial dynamics of vertical migration by Microcystis aeruginosa in a eutrophic shallow lake: a case study using high spatial resolution time-series airborne remote sensing[J]. Limnol Oceanogr, 2008, 53(6): 2391-2406. doi: 10.4319/lo.2008.53.6.2391
    [36]
    ZHOU J, QIN B, HAN X. Effects of the magnitude and persistence of turbulence on phytoplankton in Lake Taihu during a summer cyanobacterial bloom[J]. Aquat Ecol, 2016, 50(2): 197-208. doi: 10.1007/s10452-016-9568-1
    [37]
    ZHOU J, QIN B, CASENAVE C, et al. Effects of wind wave turbulence on the phytoplankton community composition in large, shallow Lake Taihu[J]. Environ Sci Pollut R, 2015, 22(16): 12737-12746. doi: 10.1007/s11356-015-4535-2
    [38]
    OLIVER R L. Floating and sinking in gas-vacuolate cyanobacteria[J]. J Phycol, 1994, 30(2): 161-173. doi: 10.1111/j.0022-3646.1994.00161.x
    [39]
    HÜISMAN J, SHARPLES J, STROOM J M, et al. Changes in turbulent mixing shift competition for light between phytoplankton species[J]. Ecology, 2004, 85(11): 2960-2970. doi: 10.1890/03-0763
    [40]
    赵文, 董双林, 李德尚, 等. 盐碱池塘浮游植物初级生产力的研究[J]. 水生生物学报, 2003, 27(1): 47-54. doi: 10.3321/j.issn:1000-3207.2003.01.010
    [41]
    赵文, 董双林, 张兆琪, 等. 盐碱池塘浮游植物初级生产力日变化的研究[J]. 应用生态学报, 2003, 14(2): 234-236. doi: 10.3321/j.issn:1001-9332.2003.02.017
    [42]
    卢迈新, 黄樟翰, 吴锐全, 等. 养鳗池塘的初级生产力和能量转换效率[J]. 水产学报, 2000, 24(1): 37-40.
  • Related Articles

    [1]HUA Qinghong, ZHAO Yuxuan, XIAO Lin, XU Ke, GE Yongchun, SUN Yunfei, CHENG Yongxu. Water quality evaluation for Eriocheir sinensis aquaculture ponds with different aquatic plants[J]. South China Fisheries Science, 2025, 21(1): 131-139. DOI: 10.12131/20240059
    [2]LI Shuaipeng, XU Bin, WANG Kun, HUANG Minqiao, YANG Dazuo, ZHOU Yibing. Southwards cultivation and nutrition composition analysis of Marphysa maxidenticulata[J]. South China Fisheries Science, 2021, 17(6): 93-100. DOI: 10.12131/20200222
    [3]YANG Wenchao, HUANG Daojian, CHEN Jixin, CHEN Xiaoyan, WANG Yushan. Spatio-temporal distribution and eutrophication assessment of nutrients in Daya Bay during 2009–2015[J]. South China Fisheries Science, 2020, 16(2): 54-61. DOI: 10.12131/20190244
    [4]YIN Qinglang, WANG Zhifang, GUO Zhongbao, BI Pengfei, ZHOU Yi, TANG Zhanyang, LUO Yongju. Economic and ecological benefits of annually two-cycle farming method of GIFT tilapia with in-pond raceway system[J]. South China Fisheries Science, 2019, 15(6): 25-33. DOI: 10.12131/20190085
    [5]CHEN Lu, LI Chunhou, DAI Ming, LIU Yong, CHEN Zuozhi, XIAO Yayuan, LIN Lin. Effect of nutrient enrichment on phytoplankton growth in the adjacent waters of the Xisha Yongxing Islands in late fall[J]. South China Fisheries Science, 2016, 12(4): 125-130. DOI: 10.3969/j.issn.2095-0780.2016.04.016
    [6]WANG Lihua, CAO Yucheng, LI Zhuojia. Algae-constraining effect of algae-lysing bacteria and its application prospect in shrimp ponds[J]. South China Fisheries Science, 2012, 8(4): 76-82. DOI: 10.3969/j.issn.2095-0780.2012.04.012
    [7]CAO Yucheng, LI Zhuojia, YANG Yingying, WEN Guoliang, HUANG Honghui. Effects of Bacillus licheniformis strain De on growth of Sparus latus and main environmental factors in aquaculture pond[J]. South China Fisheries Science, 2010, 6(3): 1-6. DOI: 10.3969/j.issn.1673-2227.2010.03.001
    [8]LIU Xiaozhu, LI Zhuojia, CAO Yucheng, WEN Guoliang. Common species composition, quantity variation and dominant species of planktonic microalgae in low salinity culture ponds[J]. South China Fisheries Science, 2009, 5(1): 9-16. DOI: 10.3969/j.issn.1673-2227.2009.01.002
    [9]LIANG Weifeng, LI Zhuojia, CHEN Suwen, WEN Guoliang, CAO Yucheng. Investigation and analysis on characteristics of microalgae community in prawn ponds[J]. South China Fisheries Science, 2007, 3(5): 33-39.
    [10]HUANG Honghui, LIN Qin, GUO Zhixun, LI Zhuojia, LU: Xiaoyu, YANG Meilan, JIA Xiaoping. Effects of probiotics on the dynamic of bacteria in marine shrimp pond[J]. South China Fisheries Science, 2007, 3(3): 14-19.
  • Cited by

    Periodical cited type(3)

    1. 王小冬,车轩,刘兴国,顾兆俊,丁艳青,陈晓龙. 曝气扰动促进高营养的饲料腐烂液中绿藻生长. 上海海洋大学学报. 2023(01): 142-149 .
    2. 黄一心,田昌凤,孟菲良,鲍旭腾,巩沐歌,丁建乐,梁澄,周海燕. 中国池塘养殖设施装备历史、现状和发展研究. 渔业现代化. 2020(03): 10-15 .
    3. 孙金娥,彭学诚,刘杰,牛占祥,江紫雪. 潮白河-京津新城段水系的水质研究. 环境科学与管理. 2019(09): 144-148 .

    Other cited types(4)

Catalog

    Article views (4747) PDF downloads (38) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return