PENG Xuan, MA Shengwei, CHEN Haigang, ZHANG Zhe, ZHOU Yanbo, CAI Wengui. Spatial distribution and assessment of nutrients in marine ranching in Zhelin Bay-Nanao Island in summer[J]. South China Fisheries Science, 2014, 10(6): 27-35. DOI: 10.3969/j.issn.2095-0780.2014.06.004
Citation: PENG Xuan, MA Shengwei, CHEN Haigang, ZHANG Zhe, ZHOU Yanbo, CAI Wengui. Spatial distribution and assessment of nutrients in marine ranching in Zhelin Bay-Nanao Island in summer[J]. South China Fisheries Science, 2014, 10(6): 27-35. DOI: 10.3969/j.issn.2095-0780.2014.06.004

Spatial distribution and assessment of nutrients in marine ranching in Zhelin Bay-Nanao Island in summer

More Information
  • Received Date: April 13, 2014
  • Revised Date: May 22, 2014
  • The marine ranching in Zhelin Bay-Nanao Island is divided into four different function areas: cage culture area, shellfish farming area, seaweed culture area and artificial reef area. Based on the survey data in that marine ranching in August of 2011, we analyzed the spatial distribution characteristics of nutrients in the surface seawater and evaluated the nutritional status. The results show that the contents of dissolved inorganic nitrogen (DIN) and active phosphate (PO4-P) decreased from the northwest of Zhelin Bay to the southeast of the investigated area. Among the four different function areas, the high-value of DIN and PO4-P occurred in the cage culture area, while the maximum content of silicate (SiO3-Si) was occurred in the shellfish framing area. Nutrient salts levels in the artificial reef area were relatively low. We assessed the sea water quality in the marine ranching by using single factor index, share rate of pollutants and comprehensive pollution index. The results suggest that the nutrient pollution trend caused by DIN and PO4-P in the marine ranching declined from the northwest to the southeast and from inshore to offshore waters. Moreover, the pollution and eutrophication state in the cage culture area was most serious, followed by the shellfish farming area, while the artificial reef area and control area were found for less pollution.

  • [1]
    黄宗国. 海洋生物学辞典[M]. 北京: 海洋出版社, 2002: 224.
    [2]
    BARTLEY D M, HOEELL B R, MOSKNESS E, et al. Marine ranching: a global perspective[C]//Stock enhancement and sea ranching: 1st International Symposium on Stock Enhancement and Sea Ranching, Bergen, Norway, September 8-11, 1997. Fishing News Books Ltd., 1999: 79-90. https://www.semanticscholar.org/paper/Marine-ranching%3A-a-global-perspective.-Bartley-Howell/4326fd962fb8acd012125de075b544e1c9a497a4
    [3]
    RILOV G, BENAYAHU Y. Fish assemblage on natural versus vertical artificial reefs: the rehabilitation perspective[J]. Mar Biol, 2000, 136(5): 931-942. doi: 10.1007/s002279900250
    [4]
    [5]
    焦金菊, 潘永玺, 孙利元, 等. 人工鱼礁区的增殖鱼类资源效果初步研究[J]. 水产科学, 2011, 30(2): 79-82. doi: 10.16378/j.cnki.1003-1111.2011.02.006
    [6]
    黄长江, 董巧香, 郑磊. 1997年中国东南沿海大规模赤潮原因生物的形态分类与生态学特征[J]. 海洋与湖沼, 1999, 30(6): 581-590. doi: 10.3321/j.issn:0029-814X.1999.06.001
    [7]
    何家菀, 施之新, 张银华, 等. 一种棕囊藻的形态特征与毒素分析[J]. 海洋与湖沼, 1999, 30(2): 172-179. doi: 10.3321/j.issn:0029-814X.1999.02.010
    [8]
    赖文学, 陈伟洲. 南澳岛海水生态养殖的进展和研究[J]. 水产科技, 2006(2): 33-34. https://d.wanfangdata.com.cn/periodical/Ch9QZXJpb2RpY2FsQ0hJTmV3UzIwMjQxMTA1MTcxMzA0Eg5RSzIwMDYwMjI4ODY4NBoIZ2tzNjRjOTM%3D
    [9]
    国家海洋局. 海洋监测规范GB 17378.3-2007[S]. 北京: 中国标准出版社, 2007. https://std.samr.gov.cn/gb/search/gbDetailed?id=71F772D7898AD3A7E05397BE0A0AB82A
    [10]
    国家海洋局. 海洋监测规范GB 17378.4-2007[S]. 北京: 中国标准出版社, 2007. https://d.wanfangdata.com.cn/standard/GB%2017378.4-2007
    [11]
    国家海洋局. 海洋监测规范GB 17378.7-2007[S]. 北京: 中国标准出版社, 2007. https://std.samr.gov.cn/gb/search/gbDetailed?id=71F772D76774D3A7E05397BE0A0AB82A
    [12]
    付会, 孙英兰, 孙磊. 灰色关联分析法在海洋环境质量评价中的应用[J]. 海洋湖沼通报, 2007(3): 127-131. doi: 10.13984/j.cnki.cn37-1141.2007.03.015
    [13]
    郭良波. 模糊数学在海洋环境评价中的应用[J]. 南阳理工学院学报, 2010, 2(2): 83-86. doi: 10.16827/j.cnki.41-1404/z.2010.02.023
    [14]
    [15]
    [16]
    [17]
    [18]
    [19]
    [20]
    [21]
    朱灵峰, 王燕, 王阳阳, 等. 基于单因子指数法的海浪河水质评价[J]. 江苏农业科学, 2012, 40(3): 326-327. doi: 10.15889/j.issn.1002-1302.2012.03.027
    [22]
    [23]
    [24]
    [25]
    [26]
    陈晨, 杨桂朋, 高先池, 等. 胶州湾微表层和次表层海水中营养盐的分布特征及富营养化研究[J]. 环境科学学报, 2012, 32(8): 1856-1865. doi: 10.13671/j.hjkxxb.2012.08.016
    [27]
    [28]
    宋秀凯, 刘爱英, 马元庆, 等. 东营近海枯水期浮游生物群落特征研究[J]. 海洋湖沼通报, 2010 (1): 95-102.
    [29]
    TIMOTHY A, RENATE V, REBECCA Z. Influence of nutrient availability on phytoplankton growth and community structure in the Port Adelaide River, Australia: bioassay assessment of potential nutrient limitation[J]. Hydrobiologia, 2000, 429(1/2/3): 89-103. doi: 10.1023/A:1004024630413
    [30]
    DORTCH Q, PACKARD T T. Differences in biomass structure between oligotrophic and eutrophic marine ecosystems [J]. Deep-Sea Res, 1989, 36(2): 223-240. doi: 10.1016/0198-0149(89)90135-0
    [31]
    JUSTIC D, RABALAIS N N, TURNER R E. Stoichiometric nutrient balance and origin of coastal eutrophication [J]. Mar Pollut Bull, 1995, 30(1): 41-46. doi: 10.1016/0025-326X(94)00105-I
    [32]
    BRONK D A, GLIBERT P M. Nitrogen uptake, dissolved organic nitrogen release, and new production [J]. Science, 1994, 265(5180): 1843-1846. doi: 10.1126/science.265.5180.1843
    [33]
    冯士笮, 李凤岐, 李少菁. 海洋科学导论[M]. 北京: 高等教育出版社, 1999: 503.
    [34]
    BALODE M, PURINA I, BECHEMIN C, et al. Effects of nutrient enrichment of the growth rates and community structure of summer phytoplankton from the Gulf of Riga, Baltic Sea [J]. J Plankton Res, 1998, 20(12): 2251-2272. doi: 10.1093/plankt/20.12.2251
    [35]
    陈玮, 吕振波. 威海湾营养盐季节变化特征及与环境因子的相关性分析[J]. 水生态学杂志, 2012, 33(3): 41-45. https://d.wanfangdata.com.cn/periodical/Ch9QZXJpb2RpY2FsQ0hJTmV3UzIwMjQxMTA1MTcxMzA0Eg9zc3R4enoyMDEyMDMwMDcaCHF1NWx2aTJ3
    [36]
    王艳玲, 王进生, 安文超. 胶州湾水质及主要营养盐季节性变化分析[J]. 中国环境管理干部学院学报, 2012, 22(3): 50-54. doi: 10.3969/j.issn.1008-813X.2012.03.015
    [37]
    张传松, 王修林, 石晓勇, 等. 东海赤潮高发区营养盐时空分布特征及其与赤潮的关系[J]. 环境科学, 2007, 28(11): 2416-2424. doi: 10.3321/j.issn:0250-3301.2007.11.002
    [38]
    房燕, 吕振波, 张焕君, 等. 荣成湾营养盐分布和变化特征[J]. 海洋湖沼通报, 2012(3): 81-89. https://d.wanfangdata.com.cn/periodical/Ch9QZXJpb2RpY2FsQ0hJTmV3UzIwMjQxMTA1MTcxMzA0Eg9oeWh6dGIyMDEyMDMwMTIaCDdiZnAxcDY2
    [39]
    颜利, 蒋金龙, 詹兴旺, 等. 泉州湾表层水主要化学要素含量和富营养化指数的时空变化特征[J]. 台湾海峡, 2012, 31(4): 459-464. https://www.zhangqiaokeyan.com/academic-journal-cn_journal-applied-oceanography_thesis/0201254265437.html
    [40]
    杨东方. 浮游植物的生态与地球生态系统的机制[M]. 北京: 海洋出版社, 2009: 68.
    [41]
    RANCH. 海洋牧场专项2011年年度进展[DB/OL]. (2012-05-04)[2013-04-16]. http://ranch.scsfri.ac.cn/index.aspx.
    [42]
    廖洋, 施玥. 北菜南栽龙须菜定居南澳十三年[N]. 中国科学报, 2013-06-12(3).
    [43]
    李杰, 雷驰宙, 陈伟洲. 南澳贝藻混养互利机制的初步研究[J]. 水产科学, 2012, 31(8): 449-453. doi: 10.3969/j.issn.1003-1111.2012.08.001
    [44]
    王翔宇, 詹冬梅, 李美真, 等. 大型海藻吸收氮磷营养盐能力的初步研究[J]. 渔业科学进展, 2011, 32(4): 67-71. doi: 10.3969/j.issn.1000-7075.2011.04.011
    [45]
    陈丽巍, 邹定辉, 刘兆普, 等. 不同N、P水平对龙须菜生长及生理生化特征的影响[J]. 海洋环境科学, 2011, 30(2): 211-215. https://www.cqvip.com/qk/95945x/201102/37505624.html
    [46]
    陈勇, 于长清, 张国胜, 等. 人工鱼礁的环境功能与集鱼效果[J]. 大连水产学院学报, 2002, 17(1): 64-69. doi: 10.3969/j.issn.1000-9957.2002.01.012
  • Related Articles

    [1]ZHOU Falin, YANG Qibin, JIANG Song, YANG Lishi, LI Yundong, HUANG Jianhua, JIANG Shigui. Analysis of combining ability and heterosis on body mass trait of three Penaeus monodon populations[J]. South China Fisheries Science, 2021, 17(1): 39-44. DOI: 10.12131/20200157
    [2]LI Ruijie, HU Xiao, LI Laihao, YANG Xianqing, CHEN Shengjun, WU Yanyan, LIN Wanling, RONG Hui. Calcium ion binding ability of tilapia skin hydrolysate and its antioxidant activity[J]. South China Fisheries Science, 2019, 15(6): 106-111. DOI: 10.12131/20190102
    [3]ZHAO Shuyan, LIN Heizhao, HUANG Zhong, ZHOU Chuanpeng, WANG Jun, WANG Yun, QI Changle, YANG Xiaoli, LIAO Jingqiu. Effect of small peptide supplementation at different protein levels on growth performance, digestive enzymes activities, serum biochemical indices and antioxidant abilities of grouper (Epinephelus akaara)[J]. South China Fisheries Science, 2016, 12(3): 15-23. DOI: 10.3969/j.issn.2095-0780.2016.03.003
    [4]LIN Mingxue, YANG Jie, YUE Wucheng, KANG Wei, LEI Shuangyong, DU Jinxing, WANG Chenghui. Analysis of combining ability, heterosis and genetic correlation on growth traits of GIFT tilapia[J]. South China Fisheries Science, 2016, 12(2): 1-6. DOI: 10.3969/j.issn.2095-0780.2016.02.001
    [5]HU Zhiguo, LIU Jianyong, BAO Xiufeng, JIANG Xiang. Combining ability and heterosis of hybridization between cultured and wild stocks of Haliotis diversicolor supertexta[J]. South China Fisheries Science, 2014, 10(1): 43-49. DOI: 10.3969/j.issn.2095-0780.2014.01.007
    [6]LIN Zhuangbing, YOU Weiwei. Heterosis analysis on crossbreeding between different populations of small abalone Haliotis diversicolor[J]. South China Fisheries Science, 2013, 9(4): 28-32. DOI: 10.3969/j.issn.2095-0780.2013.04.005
    [7]YU Xiaoming, ZHANG Xiumei. Research progress on measurements of fish swimming ability[J]. South China Fisheries Science, 2011, 7(4): 76-84. DOI: 10.3969/j.issn.2095-0780.2011.04.012
    [8]LI Min, ZHANG Hanhua, ZHU Changbo, WU Jinfeng, CHEN Lixiong. Effects of different diet combinations on the growth and survival of juvenile black abalone[J]. South China Fisheries Science, 2007, 3(6): 40-46.
    [9]JIE Xiaoyong, LI Sifa, CAI Wanqi, YE Wei, CHEN Huichong, YU Dahui. Heterosis analysis of main growth-related traits of tilapia[J]. South China Fisheries Science, 2007, 3(3): 1-7.
    [10]HUANG Guo-qiang, DONG Shuang-lin, WANG Fang. Effects of different combinations of diets on the growth and food conversion efficiency of Chinese shrimp, Fenneropenaeus chinensis[J]. South China Fisheries Science, 2005, 1(5): 26-32.
  • Cited by

    Periodical cited type(2)

    1. 赵炎,王丛丛,刘必林,林龙山,李渊. 东印度洋、南海海域鸢乌贼种群遗传结构研究. 海洋渔业. 2022(04): 396-408 .
    2. 李波,阳秀芬,邱星宇,王锦溪,周倍合,谢嘉仪,颜云榕. 基于耳石形态特征的南海鸢乌贼群体判别分析. 广东海洋大学学报. 2019(02): 58-66 .

    Other cited types(3)

Catalog

    Article views (3697) PDF downloads (1862) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return