HUA Qinghong, ZHAO Yuxuan, XIAO Lin, XU Ke, GE Yongchun, SUN Yunfei, CHENG Yongxu. Water quality evaluation for Eriocheir sinensis aquaculture ponds with different aquatic plants[J]. South China Fisheries Science, 2025, 21(1): 131-139. DOI: 10.12131/20240059
Citation: HUA Qinghong, ZHAO Yuxuan, XIAO Lin, XU Ke, GE Yongchun, SUN Yunfei, CHENG Yongxu. Water quality evaluation for Eriocheir sinensis aquaculture ponds with different aquatic plants[J]. South China Fisheries Science, 2025, 21(1): 131-139. DOI: 10.12131/20240059

Water quality evaluation for Eriocheir sinensis aquaculture ponds with different aquatic plants

More Information
  • Received Date: March 26, 2024
  • Revised Date: October 07, 2024
  • Accepted Date: October 29, 2024
  • Available Online: November 03, 2024
  • To investigate the effects of different aquatic plants on the water quality in Eriocheir sinensis aquaculture ponds with the zero-exchange water aquaculture mode, we evaluated the water quality of aquaculture ponds by single factor evaluation method, average pollution index, comprehensive water quality index (CWQI) and principal component analysis. The aquatic plants planted were Elodea nuttallii (Class I group), Vallisneria natans (Class II group) and Hydrilla verticillate (Class III group), and the water source group is the control group (CK group). We observed the water quality monitoring indexes including pH, dissolved oxygen (DO), potassium permanganate index (CODMn), total nitrogen (TN), ammoniacal nitrogen (NH4 +-N), nitrate nitrogen (NO3 -N), nitrite nitrogen (NO2 -N), total phosphorus (TP) and phosphate (PO4 3−-P). The results show that the single factor evaluation for each group's water quality was Grade V. TN and TP were the primary contaminants. The average pollution index of Class I−III groups was 1.65, 1.59 and 2.97, respectively, while that of the control group was 2.00. The CWQI evaluation grade of water quality in Class I and II groups was better than that in the other two groups. The principal component scores of Class I−III groups were generally lower than those of CK group. In summary, compared with the external water source, culturing E. nuttallii or V. natans with the zero-exchange water mode can improve water quality.

  • [1]
    农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 中国渔业统计年鉴2023[M]. 北京: 中国农业出版社, 2023: 24-25.
    [2]
    王高龙, 马旭洲, 王武, 等. 上海松江泖港地区成蟹养殖对水质的影响[J]. 安全与环境学报, 2016, 16(3): 299-304.
    [3]
    孟祥雨, 宋学宏, 陈桂娟, 等. 利用湖泊内源性饵料饲喂中华绒螯蟹 (Eriocheir sinensis) 的养殖与净水效应[J]. 湖泊科学, 2013, 25(5): 723-728. doi: 10.18307/2013.0514
    [4]
    ZENG Q F, GU X H, CHEN X, et al. The impact of Chinese mitten crab culture on water quality, sediment and the pelagic and macrobenthic community in the reclamation area of Guchenghu Lake[J]. Fish Sci, 2013, 79(4): 689-697. doi: 10.1007/s12562-013-0638-1
    [5]
    张凯, 王广军, 龚望宝, 等. 草鱼-鳙-鲫零换水池塘有机碳、氮、磷收支研究[J]. 渔业科学进展, 2022, 43(6): 188-198.
    [6]
    ZHANG K, WANG G J, FU D S, et al. Nutrient dynamics and balance of zero-water exchange ponds of grass carp, crucian carp and bighead carp[J]. Aquaculture, 2022, 561: 738565. doi: 10.1016/j.aquaculture.2022.738565
    [7]
    刘庆华, 黄姝, 岳武成, 等. 伊乐藻对中华绒螯蟹生长和营养品质的影响[J]. 中国水产科学, 2017, 24(1): 91-99.
    [8]
    伍烨菱, 王思凯, 赵峰, 等. 中华绒螯蟹幼体的栖息生境选择与行为特征[J]. 水产学报, 2024, 48(1): 95-102.
    [9]
    许郑超, 邓燕飞, 周军, 等. 中华绒螯蟹养殖池塘菌群结构和功能特征[J]. 生态学杂志, 2021, 40(7): 2223-2233.
    [10]
    鲁言波, 陈湛峰, 李彤. 基于改进TOPSIS模型的广东省主要湖库水质特征分析[J]. 生态环境学报, 2023, 32(12): 2194-2206.
    [11]
    MATTA G, NAYAK A, KUMAR A, et al. Water quality assessment using NSFWQI, OIP and multivariate techniques of Ganga River system, Uttarakhand, India[J]. Appl Water Sci, 2020, 10(9): 206. doi: 10.1007/s13201-020-01288-y
    [12]
    范新凤, 韩美, 王磊, 等. 小清河入海口近十年水质变化及驱动因素分析[J]. 环境科学, 2020, 41(4): 1619-1628.
    [13]
    TIAN Y Q, WEN Z G, CHENG M L, et al. Evaluating the water quality characteristics and tracing the pollutant sources in the Yellow River Basin, China[J]. Sci Total Environ, 2022, 846: 157389. doi: 10.1016/j.scitotenv.2022.157389
    [14]
    KUMAR D, KUMAR R, SHARMA M, et al. Global water quality indices: development, implications and limitations[J]. Tot Environ Adv, 2024, 9: 200095. doi: 10.1016/j.teadva.2023.200095
    [15]
    HURLEY T, SADIQ R, MAZUMDER A. Adaptation and evaluation of the Canadian Council of Ministers of the Environment Water Quality Index (CCME WQI) for use as an effective tool to characterize drinking source water quality[J]. Water Res, 2012, 46(11): 3544-3552. doi: 10.1016/j.watres.2012.03.061
    [16]
    赵连玲, 刘华雪, 饶义勇, 等. 基于改进灰色关联度聚类的海水质量状况评价方法研究: 以大亚湾为例[J]. 南方水产科学, 2024, 20(1): 141-150. doi: 10.12131/20230031
    [17]
    国家环保局本书编委会. 水和废水监测分析方法[M]. 北京: 中国环境科学出版社, 1989: 200-284.
    [18]
    KUMAR A K, VINEET T. Water quality analysis of River Ganga and Yamuna using water quality index (WQI) during Kumbh Mela 2019, Prayagraj, India[J]. Environ Dev Sustain, 2023, 26(2): 5451-5472. doi: 10.1007/s10668-023-02907-9
    [19]
    CCME. Canadian water quality guidelines for the protection of aquatic life: CCME Water Quality 1.0. [R/OL]. [2024-03-27]. https://prrd.bc.ca/wp-content/uploads/post/prrd-water-quality-database-and-analysis/WQI-Technical-Report-en.pdf.
    [20]
    胡傲, 李宇辉, 杨予静, 等. 不同生长型沉水植物配置对生物量积累和水质净化效果的影响[J]. 湖泊科学, 2022, 34(5): 1484-1492. doi: 10.18307/2022.0527
    [21]
    YIN L, FU L J, WU H, et al. Modeling dissolved oxygen in a crab pond[J]. Ecol Modell, 2021, 440: 109385. doi: 10.1016/j.ecolmodel.2020.109385
    [22]
    刘金金, 张玉平, 孙振中. 上海崇明中华绒螯蟹养殖池塘水环境质量及氮磷负荷估算[J]. 淡水渔业, 2020, 50(6): 60-69. doi: 10.3969/j.issn.1000-6907.2020.06.009
    [23]
    刘子健, 李卫明, 张续同, 等. 静水与流水条件下沉水植物生长对上覆水和沉积物磷迁移的影响[J]. 环境科学研究, 2023, 36(5): 975-985.
    [24]
    邬淑婷, 周之栋, 华建峰, 等. 浮水植物-底泥-微生物系统对富营养化水体氮的净化作用[J]. 生态与农村环境学报, 2021, 37(10): 1341-1351.
    [25]
    华映肖, 潘继征, 杜劲松, 等. 富营养化高原浅水湖泊持续多年生态修复工程效果分析: 以滇池大泊口为例[J]. 湖泊科学, 2023, 35(5): 1549-1561. doi: 10.18307/2023.0514
    [26]
    孙作登, 宋祥甫, 付子轼, 等. 不同沉水植物对水质净化效能的研究[J]. 上海农业学报, 2012, 28(2): 30-35. doi: 10.3969/j.issn.1000-3924.2012.02.008
    [27]
    林运通, 崔理华, 范远红, 等. 5种湿地沉水植物对模拟污水厂尾水的深度处理[J]. 环境工程学报, 2016, 10(12): 6914-6922. doi: 10.12030/j.cjee.201507215
    [28]
    王亚林, 高园园, 于丹, 等. 3种沉水植物对夏季高温强光照环境的生理响应[J]. 水生态学杂志, 2015, 36(5): 74-80.
    [29]
    丁玲, 李羚君, 李剑峰, 等. 沉水植物净化人工水源湖原水中氮磷和悬浮物的试验研究[J]. 生态环境学报, 2018, 27(1): 122-129.
    [30]
    胡方旭, 张弘杰, 秦梦钰, 等. 苦草、轮叶黑藻对养殖水体的净化效果研究[J]. 环境科学与技术, 2019, 42(S1): 14-21.
    [31]
    吴凯, 马旭洲, 王友成, 等. 3种水草腐解对水质的影响[J]. 上海海洋大学学报, 2016, 25(5): 726-734. doi: 10.12024/jsou.20151201627
    [32]
    张松. 苦草氮磷吸收动力学[D]. 武汉: 华中农业大学, 2013: 12-15.
    [33]
    郭晶, 王丑明, 黄代中, 等. 洞庭湖水污染特征及水质评价[J]. 环境化学, 2019, 38(1): 152-160. doi: 10.7524/j.issn.0254-6108.2018013104
    [34]
    刘淼, 陈开宁. 植物配置与进水碳氮比对沉水植物塘水质净化效果的影响[J]. 环境科学, 2018, 39(6): 2706-2714.
    [35]
    张光宝, 姜晓东, 陈文彬, 等. 水草种植模式对全雄中华绒螯蟹成蟹养殖性能和经济效益的影响[J]. 南方水产科学, 2023, 19(2): 107-115. doi: 10.12131/20220260
    [36]
    黄子贤, 张饮江, 马海峰, 等. 4种沉水植物对富营养化水体氮磷的去除能力[J]. 生态科学, 2011, 30(2): 102-106. doi: 10.3969/j.issn.1008-8873.2011.02.02
    [37]
    殷雪妍, 严广寒, 汪星, 等. 不同水质评价方法在通江湖泊中的适用性: 以洞庭湖为例[J]. 环境工程技术学报, 2023, 13(3): 1070-1078. doi: 10.12153/j.issn.1674-991X.20220397
    [38]
    朱美军, 柳冬梅, 吉秀芹. 三种指数法在水质评价中的适用性研究[J]. 中国资源综合利用, 2020, 38(11): 52-55, 60. doi: 10.3969/j.issn.1008-9500.2020.11.015
  • Related Articles

    [1]WANG Zhilong, XIA Yun, XIE Jun, SHU Rui, WANG Guangjun, YU Ermeng, LEI Xiaoting, GONG Wangbao. Comparative analysis of muscle quality, intestinal morphology and microbial composition in two cultured frogs species[J]. South China Fisheries Science, 2024, 20(1): 173-183. DOI: 10.12131/20230159
    [2]ZHAO Wenyu, YU Dawei, DONG Junli, XIA Wenshi, LI Lihua. Effect of different molecular weight chitosan coating on preservation of fish fillets during refrigerated storage[J]. South China Fisheries Science, 2022, 18(2): 150-157. DOI: 10.12131/20210333
    [3]TAO Feiyan, PAN Chuang, CHEN Shengjun, HU Xiao, DENG Jianchao, LI Chunsheng, RONG Hui, WANG Yueqi. Microbial analysis of Litopenaeus vannamei during partial freezing storage by Illumina high throughput sequencing[J]. South China Fisheries Science, 2021, 17(2): 104-113. DOI: 10.12131/20200211
    [4]ZHANG Jiasong, DUAN Yafei, ZHANG Zhenzhen, DONG Hongbiao, LI Zhuojia. Research progress of intestinal microbial flora in shrimp[J]. South China Fisheries Science, 2015, 11(6): 114-119. DOI: 10.3969/j.issn.2095-0780.2015.06.016
    [5]YOU Gang, WU Yanyan, LI Laihao, YANG Xianqing, QI Bo, CHEN Shengjun. Effect of inoculating compound lactic acid bacteria on microbial, nitrites and nitrosamines of salted fish[J]. South China Fisheries Science, 2015, 11(4): 109-115. DOI: 10.3969/j.issn.2095-0780.2015.04.016
    [6]SHI Haifeng, GAO Jian, YING Jie, LIN Jianyu, XU Xinbo, LUO Hongyu. Preservation effects of water-soluble chitosan on surimi product[J]. South China Fisheries Science, 2011, 7(4): 49-54. DOI: 10.3969/j.issn.2095-0780.2011.04.008
    [7]DIAO Shiqiang, LI Laihao, CEN Jianwei, WU Yanyan. Preservation effect of ozone water on anchovy (Engraulis japonius) during controlled freezing-point storage[J]. South China Fisheries Science, 2011, 7(3): 8-13. DOI: 10.3969/j.issn.2095-0780.2011.03.002
    [8]WU Yunhui, LIN Lifang, QIU Chengyu. Application of sodium carboxymethylcellulose coating in preservation of razor clam[J]. South China Fisheries Science, 2011, 7(2): 68-72. DOI: 10.3969/j.issn.2095-0780.2011.02.011
    [9]ZOU Li, MIAO Zhenqing, YU Cungen, CHEN Zhihai, ZHENG Ji, ZHANG Feijun, SHUI Bonian. Analysis of composition and diversity of catches by stow net[J]. South China Fisheries Science, 2010, 6(6): 46-53. DOI: 10.3969/j.issn.1673-2227.2010.06.008
    [10]DIAO Shiqiang, CHEN Peiji, LI Laihao, YANG Xianqing, WU Yanyan, HAO Shuxian, CEN Jianwei. Research on the application of ozone ice in Litopeneaus vannamei preservation[J]. South China Fisheries Science, 2008, 4(1): 53-57.

Catalog

    Article views (103) PDF downloads (54) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return