WEI Wendi, FENG Xue, YUAN Huarong, LI Xiaoguo, CHEN Pimao. Preliminary study on biological carbon storage of fishery resources in Zhuhai Wailingding marine ranching in spring[J]. South China Fisheries Science, 2024, 20(5): 71-80. DOI: 10.12131/20240023
Citation: WEI Wendi, FENG Xue, YUAN Huarong, LI Xiaoguo, CHEN Pimao. Preliminary study on biological carbon storage of fishery resources in Zhuhai Wailingding marine ranching in spring[J]. South China Fisheries Science, 2024, 20(5): 71-80. DOI: 10.12131/20240023

Preliminary study on biological carbon storage of fishery resources in Zhuhai Wailingding marine ranching in spring

More Information
  • Received Date: January 24, 2024
  • Revised Date: March 06, 2024
  • Accepted Date: March 31, 2024
  • Available Online: April 10, 2024
  • Marine ranching is an important component of carbon sink fisheries. In order to assess the biological carbon storage of fishery resources in different functional areas of marine ranching, based on the trawl survey data from the Zhuhai Wailingding marine ranching in spring, we analyzed the current status of fishery resources, measured the biological carbon content of fishery resources, and estimated the biological carbon storage of fishery resources in the marine ranching. The results show that the biomass of fishery resources in spring was 4 505.48 kg; the resource density was 458.34 kg·km−2, which was 23.34% higher than that in the contrast area; the carbon content of wet biological samples in fishery resources was 6.53%−17.02% for Osteichthya, 8.55%−10.19% for Chondroichthya, 6.70%−11.84% for Crustacea, 6.48%−9.89% for Cephalopoda, and 27.04%−27.39% for Bivalva; the biological carbon storage of fishery resources of the marine ranching was 495.63 kg; the carbon density was 50.42 kg·km−2, which was 46.40% higher than that in the contrast area; the carbon density followed a descending trend of stock enhancement area>new artificial reef area>original artificial reef area>contrast area. It is preliminarily suggest that according to the differences in biological carbon content among different fishery resources, the carbon storage capacity of marine ranching could be improved by adjusting the structure of fishery resources through artificial reefs, stock enhancement and other means.

  • [1]
    聂弯, 黄靖, 夏炎, 等. 海洋蓝碳生态系统服务价值评估: 以盐城市海洋蓝碳为例[J]. 生态经济, 2023, 39(12): 41-48.
    [2]
    MAITENYI-HILL C, REITHMAIER G, YAU Y Y Y, et al. Inorganic carbon outwelling from a Mediterranean seagrass meadow using radium isotopes[J]. Estuar Coast Shelf Sci, 2023, 283: 108248.
    [3]
    焦念志. 研发海洋“负排放”技术支撑国家“碳中和”需求[J]. 中国科学院院刊, 2021, 36(2): 179-187.
    [4]
    谢素美, 罗伍丽, 贺义雄, 等. 中国海洋碳汇交易市场构建[J]. 科技导报, 2021, 39(24): 84-95.
    [5]
    陈小龙, 狄乾斌, 侯智文, 等. 海洋碳汇研究进展及展望[J]. 资源科学, 2023, 45(8): 1619-1633. doi: 10.18402/resci.2023.08.10
    [6]
    XU Y F, LIU H P, YANG Y F, et al. Assessment of carbon sink potential and methane reduction scenarios of marine macroalgae (Gracilaria) cultivation[J]. Sci China Earth Sci, 2023, 66: 1047-1061.
    [7]
    唐启升, 刘慧. 海洋渔业碳汇及其扩增战略[J]. 中国工程科学, 2016, 18(3): 68-73. doi: 10.3969/j.issn.1009-1742.2016.03.012
    [8]
    陈丕茂, 舒黎明, 袁华荣, 等. 国内外海洋牧场发展历程与定义分类概述[J]. 水产学报, 2019, 43(9): 1851-1869.
    [9]
    唐启升, 蒋增杰, 毛玉泽. 渔业碳汇与碳汇渔业定义及其相关问题的辨析[J]. 渔业科学进展, 2022, 43(5): 1-7.
    [10]
    李纯厚, 贾晓平, 齐占会, 等. 大亚湾海洋牧场低碳渔业生产效果评价[J]. 农业环境科学学报, 2011, 30(11): 2346-2352.
    [11]
    沈新强, 全为民, 袁骐. 长江口牡蛎礁恢复及碳汇潜力评估[J]. 农业环境科学学报, 2011, 30(10): 2119-2123.
    [12]
    虞宝存, 梁君. 贝藻类碳汇功能及其在海洋牧场建设中的应用模式初探[J]. 福建水产, 2012, 34(4): 339-343. doi: 10.3969/j.issn.1006-5601.2012.04.014
    [13]
    李娇, 关长涛, 公丕海, 等. 人工鱼礁生态系统碳汇机理及潜能分析[J]. 渔业科学进展, 2013, 34(1): 65-69. doi: 10.3969/j.issn.1000-7075.2013.01.010
    [14]
    公丕海. 海洋牧场中海珍品的固碳作用及固碳量估算[D]. 上海: 上海海洋大学, 2014: 18-39.
    [15]
    马欢, 秦传新, 陈丕茂, 等. 南海柘林湾海洋牧场生物碳储量研究[J]. 南方水产科学, 2017, 13(6): 56-64. doi: 10.3969/j.issn.2095-0780.2017.06.007
    [16]
    崔晨. 祥云湾海洋牧场人工鱼礁区碳汇功能初步研究[D]. 保定: 河北农业大学, 2021: 1-8.
    [17]
    中华人民共和国农业农村部. 中华人民共和国农业农村部公告 第115号[EB/OL]. [2024-01-10]. http://www.moa.gov.cn/govpublic/YYJ/201812/t20181229_6165798.htm.
    [18]
    李梦迪. 石雀滩海洋牧场典型岩礁鱼类碳储量评估方法对比及其价值核算研究[D]. 舟山: 浙江海洋大学, 2023: 10-19.
    [19]
    罗惠桂, 汪佳仪, 谢珍玉, 等. 三亚蜈支洲岛毗邻海域鱼类物种多样性及群落结构特征[J]. 海洋科学, 2023, 47(7): 74-86.
    [20]
    侯瑞萍, 夏朝宗, 陈健, 等. 长江经济带林地和其他生物质碳储量及碳汇量研究[J]. 生态学报, 2022, 42(23): 9483-9498.
    [21]
    倪添, 谢龙飞, 董利虎. 黑龙江省樟子松人工林含碳量估算方法的比较[J]. 生态学杂志, 2023, 42(7): 1774-1782.
    [22]
    PALOU A, JIMÉNEZ P, CASALS J, et al. Evaluation of the Near Infrared Spectroscopy (NIRS) to predict chemical composition in Ulva ohnoi[J]. J Appl Phycol, 2023, 35(5): 2007-2015.
    [23]
    卢振彬, 黄美珍. 福建近海主要经济渔业生物营养级和有机碳含量研究[J]. 台湾海峡, 2004(2): 153-158.
    [24]
    张荣良. 烟台近岸人工鱼礁与自然岩礁食物网结构与功能对比研究[D]. 北京: 中国科学院大学, 2021: 1-14.
    [25]
    PAN Y, TONG H H, WEI D Z, et al. Review of structure types and new development prospects of artificial reefs in China[J]. Front Mar Sci, 2022, 9: 1-17.
    [26]
    李建都, 赵祺, 刘晋冀, 等. 黄渤海不同人工鱼礁区渔业生物群落结构特征及生物增量影响要素[J]. 中国水产科学, 2023, 30(3): 371-383. doi: 10.12264/JFSC2022-0406
    [27]
    张镇, 董建宇, 孙昕, 等. 莱州湾芙蓉岛人工鱼礁区大型底栖动物的营养结构特征[J]. 水产学报, 2023, 47(9): 62-75.
    [28]
    水柏年. 海洋渔业资源增殖放流反思及优化探讨[J]. 大连海洋大学学报, 2023, 38(5): 737-743.
    [29]
    李木子, 曾雅, 任同军. 中国渔业增殖放流问题及对策研究[J]. 中国水产, 2021(9): 42-45.
    [30]
    冯雪, 范江涛, 孙晓, 等. 珠海外伶仃人工鱼礁对鱼类资源养护效果初步评估[J]. 南方农业学报, 2021, 52(12): 3228-3236. doi: 10.3969/j.issn.2095-1191.2021.12.005
    [31]
    张秀梅, 纪棋严, 胡成业, 等. 海洋牧场生态系统稳定性及其对干扰的响应: 研究现状、问题及建议[J]. 水产学报, 2023, 47(11): 107-121.
    [32]
    冯雪, 戴小杰, 范江涛, 等. 外伶仃海洋牧场附近海域渔业资源季节动态变化分析[J]. 南方水产科学, 2023, 19(5): 32-38. doi: 10.12131/20220308
    [33]
    曾旭. 马鞍列岛岩礁性鱼类栖息地利用与保护型人工鱼礁选址研究[D]. 上海: 上海海洋大学, 2019: 1-9.
    [34]
    詹启鹏, 董建宇, 孙昕, 等. 芙蓉岛海域人工鱼礁投放对大型底栖动物群落结构和功能性状的影响[J]. 应用生态学报, 2023, 34(3): 796-804.
    [35]
    CHONG L. Evaluating the socioecological effects and feedbacks of artificial reefs for recreational fisheries and Gulf of Mexico red snapper management[D]. Gainesville: University of Florida, 2023: 15-21.
    [36]
    ZHANG Y, ZHAO M X, CUI Q, et al. Processes of coastal ecosystem carbon sequestration and approaches for increasing carbon sink[J]. Sci China Earth Sci, 2017, 60(5): 809-820. doi: 10.1007/s11430-016-9010-9
    [37]
    EPSTEIN G, ROBERTS C M. Does biodiversity-focused protection of the seabed deliver carbon benefits? A UK case study[J]. Conserv Lett, 2022, 16(1): 1-9.
    [38]
    蒋鑫坤, 李丽, 董双林. 贝类养殖区CO2释放量化新模型的应用研究[J]. 中国水产科学, 2022, 29(12): 1693-1703.
  • Related Articles

    [1]CHEN Guobao, CHENG Gao, NIU Lulian, ZOU Jianwei, YU Jie, CHEN Pimao. Application of fishery acoustic frequency difference technology in fishery resource assessment of marine ranching in southern sea area of Yintan, Guangxi[J]. South China Fisheries Science, 2025, 21(2): 38-46. DOI: 10.12131/20240129
    [2]FENG Xue, TONG Fei, YUAN Huarong, ZHAO Xueqian, CHEN Pimao. Distribution characteristics and ecological risk assessment of heavy metals in sediments in adjacent waters of Wailingding marine ranching[J]. South China Fisheries Science, 2024, 20(5): 91-102. DOI: 10.12131/20240101
    [3]NIU Lulian, CHEN Guobao, ZOU Jianwei, TONG Fei, YU Jie. Assessment of fishery resources in southern sea area of Yintan Marine Ranching, Guangxi Province[J]. South China Fisheries Science, 2024, 20(5): 53-62. DOI: 10.12131/20230236
    [4]FENG Xue, DAI Xiaojie, FAN Jiangtao, CHEN Pimao. Seasonal variation of fishery resources in Wailingding marine ranching and adjacent waters[J]. South China Fisheries Science, 2023, 19(5): 32-38. DOI: 10.12131/20220308
    [5]XIE Xiaoyan, CHEN Pimao, TONG Fei, YUAN Huarong, FENG Xue, YU Jing, YU Jie, SHU Liming. Site selection of marine ranching in Wailingding Island sea area of Zhuhai[J]. South China Fisheries Science, 2022, 18(5): 18-29. DOI: 10.12131/20210241
    [6]ZHANG Jun, QIU Yongsong, CHEN Zuozhi, ZHANG Peng, ZHANG Kui, FAN Jiangtao, CHEN Guobao, CAI Yancong, SUN Mingshuai. Advances in pelagic fishery resources survey and assessment in open South China Sea[J]. South China Fisheries Science, 2018, 14(6): 118-127. DOI: 10.12131/20180037
    [7]ZENG Lei, CHEN Guobao, YU Jie. Acoustic assessment of fishery resources and spatial distribution in Nan'ao Island area[J]. South China Fisheries Science, 2018, 14(2): 26-35. DOI: 10.3969/j.issn.2095-0780.2018.02.004
    [8]MA Huan, QIN Chuanxin, CHEN Pimao, FENG Xue, YUAN Huarong, LI Xiaoguo, LIN Huijie. Study of biomass carbon storage in Zhelin Bay marine ranch of South China Sea[J]. South China Fisheries Science, 2017, 13(6): 56-64. DOI: 10.3969/j.issn.2095-0780.2017.06.007
    [9]LI Chun-hou, QI Zhan-hui, HUANG Hong-hui, LIU Yong, KONG Xiao-lan, XIAO Ya-yuan. Review on marine carbon sink and development of carbon sink fisheries in South China Sea[J]. South China Fisheries Science, 2010, 6(6): 81-86. DOI: 10.3969/j.issn.1673-2227.2010.06.015
    [10]NIU Mingxiang, ZHAO Xianyong. Application of satellite remote sensing and GIS technology to the research of marine fishery resources[J]. South China Fisheries Science, 2008, 4(3): 70-74.
  • Cited by

    Periodical cited type(4)

    1. 赵新宇,史宝,王成刚,程汉良,马晓东. 投喂频率对工厂化循环水养殖星康吉鳗生长、生理指标及其水质的影响. 渔业科学进展. 2024(02): 233-244 .
    2. 刘鉴毅,杨俊,李琪,孙艳秋,刘佳伦,邹雄,方可菲,庄平,冯广朋,赵峰,黄晓荣. 投喂水平和投喂频率对多纹钱鲽鱼幼鱼生长、血清生化指标、肝脏和肠道组织消化酶的影响. 海洋渔业. 2024(02): 217-227 .
    3. 徐岩,孙朝徽,刘霞,任建功,司飞. 不同光照周期对牙鲆幼鱼胃排空率的影响及其模型分析. 中国渔业质量与标准. 2024(04): 14-19 .
    4. 平洪领,付铁中,张涛,史会来,林慧,杨淑越. 投喂频率对横带髭鲷(Hapalogenys mucronatus)幼鱼生长、体成分、消化系统酶活及组织结构的影响. 海洋与湖沼. 2024(06): 1550-1558 .

    Other cited types(0)

Catalog

    Article views (900) PDF downloads (85) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return