Citation: | FENG Xue, TONG Fei, YUAN Huarong, ZHAO Xueqian, CHEN Pimao. Distribution characteristics and ecological risk assessment of heavy metals in sediments in adjacent waters of Wailingding marine ranching[J]. South China Fisheries Science, 2024, 20(5): 91-102. DOI: 10.12131/20240101 |
Sediment is the geological material that carries information of the evolution history of the earth and the changes of human activities. In order to understand the current situation and ecological risk of sediments, based on the survey data of 2020 and 2021 in adjacent waters of Wailingding marine ranching, we investigated the contents of particle size, characteristics indexes and six heavy metals. By using Nemero comprehensive pollution index, potential ecological risk index and geo-accumulation index, we evaluated the potential ecological risk of heavy metals. Furthermore, we discussed the possibility of heavy metal sources. The results indicate that the main type of sediments in the survey sea area was silty clay, with significant spatial differences in the content of various elements, showing a gradually decreasing trend with the increase of offshore distance. All the six heavy metals had a high positive correlation with total organic carbon. The assessment results obtained by three ecological risk assessment methods are basically consistent: the high pollution area was mainly located in the artificial reef construction area, northeast of Wailingding. The results of the nemero comprehensive pollution index show that the sediment was at Level 1 of cleanliness. The potential ecological risk index shows that Hg had the highest proportion in the evaluation, and its potential risk coefficient and ground accumulation index were significantly higher than those of other heavy metals. The results reveal that the ecological risk of heavy metals in the sediments is generally at low level, but heavy metals, especially Hg, still needs to be highly concerned.
[1] |
冯顺楼. 开创海洋渔业新局面的一个重要措施: 从我国海洋渔业潜在危机看人工鱼礁建设的必要性[J]. 福建水产, 1983(4): 20-23.
|
[2] |
HERATH I, VITHANAGE M, BUNDSCHUH J. Antimony as a global dilemma: geochemistry, mobility, fate and transport[J]. Environ Pollut, 2017, 223: 545-559. doi: 10.1016/j.envpol.2017.01.057
|
[3] |
ZHANG C, YU Z G, ZENG G M, et al. Effects of sediment geochemical properties on heavy metal bioavailability[J]. Environ Int, 2014, 73: 270-281. doi: 10.1016/j.envint.2014.08.010
|
[4] |
BENSON N U, UDOSEN E D, ESSIEN J P, et al. Geochemical fractionation and ecological risks assessment of benthic sediment bound heavy metals from coastal ecosystems off the Equatorial Atlantic Ocean[J]. Int J Sediment Res, 2017, 32(3): 410-420. doi: 10.1016/j.ijsrc.2017.07.007
|
[5] |
杨文超, 黄道建, 陈继鑫, 等. 大亚湾2010—2018年表层沉积物中重金属含量时空分布及生态风险评价[J]. 南方水产科学, 2020, 16(4): 39-46.
|
[6] |
张明燡, 田涛, 吴忠鑫, 等. 鲅鱼圈海域鱼礁区投礁前的生态环境调查评估[J]. 水产学杂志, 2021, 34(2): 76-85. doi: 10.3969/j.issn.1005-3832.2021.02.014
|
[7] |
陈勇, 温泽民, 尹增强, 等. 辽宁大长山海洋牧场拟建海域表层沉积物重金属潜在生态风险的评价[J]. 大连海洋大学学报, 2015, 30(1): 89-95. doi: 10.3969/J.ISSN.2095-1388.2015.01.017
|
[8] |
贾婷婷, 高燕, 侯纯强, 等. 渤海湾近岸人工鱼礁区表层沉积物重金属分布特征及生态风险评价[J]. 环境与健康杂志, 2015, 32(12): 1092-1096.
|
[9] |
李大鹏, 张硕, 张中发, 等. 基于地球化学特性的海州湾海洋牧场沉积物重金属研究[J]. 环境科学, 2017, 38(11): 4525-4536.
|
[10] |
石一茜, 赵旭, 俞锦辰, 等. 马鞍列岛人工鱼礁修复海域沉积物重金属形态组成及垂直分布特征[J]. 水产学报, 2019, 43(9): 1952-1962.
|
[11] |
谢笑艳, 陈丕茂, 佟飞, 等. 珠海外伶仃岛海域海洋牧场选址探讨[J]. 南方水产科学, 2022, 18(5): 18-29.
|
[12] |
冯雪, 范江涛, 孙晓, 等. 珠海外伶仃人工鱼礁对鱼类资源养护效果初步评估[J]. 南方农业学报, 2021, 52(12): 3228-3236. doi: 10.3969/j.issn.2095-1191.2021.12.005
|
[13] |
冯雪, 戴小杰, 范江涛, 等. 外伶仃海洋牧场附近海域渔业资源季节动态变化分析[J]. 南方水产科学, 2023, 19(5): 32-38.
|
[14] |
朱嘉, 刘建辉, 蔡晓琼. 珠江口外伶仃岛海滩修复研究[J]. 海洋开发与管理, 2014, 31(11): 36-40. doi: 10.3969/j.issn.1005-9857.2014.11.009
|
[15] |
章守宇, 张焕君, 焦俊鹏, 等. 海州湾人工鱼礁海域生态环境的变化[J]. 水产学报, 2006, 30(4): 475-480.
|
[16] |
刘丽华. 福建省西南近岸海域表层沉积物重金属污染特征与风险评价[J]. 海洋环境科学, 2022, 41(2): 200-207. doi: 10.12111/j.issn.1000-3304.2022.2.hyhjkx202202007
|
[17] |
BRADY J P, AYOKO G A, MARTENS W N, et al. Development of a hybrid pollution index for heavy metals in marine and estuarine sediments[J]. Environ Monit Assess, 2015, 187(5): 306.
|
[18] |
HAKANSON L. An ecological risk index for aquatic pollution control: a sedimentological approach[J]. Water Res, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8
|
[19] |
张远辉, 杜俊民. 南海表层沉积物中主要污染物的环境背景值[J]. 海洋学报, 2005, 27(4): 161-166. doi: 10.3321/j.issn:0253-4193.2005.04.022
|
[20] |
MÜLLER G. Index of geoaccumulation in sediments of the Rhine River[J]. GeoJournal, 1969, 2: 108-118.
|
[21] |
XU G, LIU J, PEI S F, et al. Sediment properties and trace metal pollution assessment in surface sediments of the Laizhou Bay, China[J]. Environ Sci Pollut Res, 2015, 22(15): 11634-11647. doi: 10.1007/s11356-015-4393-y
|
[22] |
张朋朋, 胡蕾, 王小丹, 等. 长岛北四岛海洋牧场海域环境适宜性分析[J]. 山东国土资源, 2022, 38(5): 54-62. doi: 10.12128/j.issn.1672-6979.2022.05.009
|
[23] |
赵一阳, 鄢明才. 中国浅海沉积物地球化学[M]. 北京: 科学出版社, 1994: 197.
|
[24] |
COTTÉ-KRIEF M, THOMAS A J, MARTIN J. Trace metal (Cd, Cu, Ni and Pb) cycling in the upper water column near the shelf edge of the European continental margin (Celtic Sea)[J]. Mar Chem, 2002, 79(1): 1-26. doi: 10.1016/S0304-4203(02)00013-0
|
[25] |
张涛, 牛丽霞, 何方婷, 等. 人类活动影响下伶仃洋沉积格局演变特征[J]. 沉积学报, 2022, 40(3): 753-764.
|
[26] |
肖志建, 李团结, 廖世智. 伶仃洋表层沉积物特征及其泥沙运移趋势[J]. 热带海洋学报, 2011, 30(4): 58-65. doi: 10.3969/j.issn.1009-5470.2011.04.009
|
[27] |
LIU R M, MEN C, LIU Y Y, et al. Spatial distribution and pollution evaluation of heavy metals in Yangtze estuary sediment[J]. Mar Pollut Bull, 2016, 110(1): 564-571. doi: 10.1016/j.marpolbul.2016.05.060
|
[28] |
WANG Z H, FENG J, JIANG T, et al. Assessment of metal contamination in surface sediments from Zhelin Bay, the South China Sea[J]. Mar Pollut Bull, 2013, 76(1/2): 383-388. doi: 10.1016/j.marpolbul.2013.07.050
|
[29] |
陈斌, 吕向立, 王中瑗, 等. 珠江口表层沉积物重金属潜在生态风险及生物富集评价[J]. 中国海洋大学学报(自然科学版), 2021, 51(7): 73-82.
|
[30] |
SONG H Y, LIU J Q, YIN P, et al. Distribution, enrichment and source of heavy metals in Rizhao offshore area, southeast Shandong Province[J]. Mar Pollut Bull, 2017, 119(2): 175-180. doi: 10.1016/j.marpolbul.2017.04.017
|
[31] |
LOSKA K, WIECHUłA D. Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir[J]. Chemosphere, 2003, 51(8): 723-733. doi: 10.1016/S0045-6535(03)00187-5
|
[32] |
刘广州, 胡嘉镗, 李适宇. 珠江口夏季海陆源有机碳的模拟研究:分布特征、贡献比重及其迁移转化过程[J]. 中国环境科学, 2020, 40(1): 162-173.
|
[33] |
张起源, 刘谞承, 赵建刚, 等. 广东沿海沉积物重金属含量及风险评价[J]. 中国环境科学, 2018, 38(12): 4653-4660.
|
[34] |
陈耿. 广东省煤电行业大气铅污染现状分析[J]. 环境监测管理与技术, 2016, 28(1): 24-26, 63.
|
[35] |
陈淑梅, 王菊英, 马德毅, 等. 酸溶硫化物与沉积物中重金属化学活性的关系[J]. 海洋环境科学, 1999, 18(3): 16-21.
|
[36] |
李青生, 王翠, 蒋金龙, 等. 九龙江口表层沉积物重金属的污染特征与来源分析[J]. 海洋科学, 2020, 44(12): 32-43.
|
[37] |
郑懿珉, 高茂生, 刘森, 等. 莱州湾表层沉积物重金属分布特征及生态环境评价[J]. 海洋环境科学, 2015, 34(3): 354-360.
|
[38] |
卢璐, 张硕, 赵裕青, 等. 海州湾人工鱼礁海域沉积物中重金属生态风险的分析[J]. 大连海洋大学学报, 2011, 26(2): 126-132. doi: 10.3969/j.issn.1000-9957.2011.02.006
|
[39] |
陈海南, 张春华, 刘国强, 等. 广西北部湾沉积物重金属污染特征及生态风险评价[J]. 环境化学, 2022, 41(9): 2872-2879.
|
[40] |
程嘉熠, 王晓萌, 杨正先, 等. 双台子河口沉积物重金属溯源及生态风险评估[J]. 中国环境科学, 2021, 41(3): 1345-1353. doi: 10.3969/j.issn.1000-6923.2021.03.038
|
1. |
张凯,张麟,彭凌风,陈鑫,刘合刚,胡志刚. 基于性别差异的少棘巨蜈蚣蛋白组和转录组联合分析. 时珍国医国药. 2024(04): 892-898 .
![]() | |
2. |
韩财安,李安东,周美玉,廖怀生. 小龙虾幼苗培育关键技术. 江西水产科技. 2022(05): 30-31+34 .
![]() |