Citation: | NIU Lulian, CHEN Guobao, ZOU Jianwei, TONG Fei, YU Jie. Assessment of fishery resources in southern sea area of Yintan Marine Ranching, Guangxi Province[J]. South China Fisheries Science, 2024, 20(5): 53-62. DOI: 10.12131/20230236 |
In order to understand the status of fish resources in the Beihai Yintan Marine Ranching sea area of Guangxi Province, we conducted two acoustic surveys with a split-beam scientific echosounder (Simrad EK80) in March 2022 and January 2023. We evaluated the fish density, fish biomass density and spatial distribution in the survey sea area by using echo integration method combined with trawl sampling (Mesh size: 4.0 cm×2.5 cm). The results show that both in the artificial reef area and control area, the catches were mainly composed of small individuals (Average masses of individuals in 2022 and 2023 were 8.64 and 29.8 g, respectively). In March 2022, the average fish densities of acoustic evaluation species in the artificial reef area and control area were 66 003 and 41 903 inds·km−2, respectively. The average fish biomass densities in the artificial reef area and control area were 726.66 and 469.90 kg·km−2, respectively. In January 2023, the average fish densities of acoustic evaluation species in the artificial reef area and control area were 17 194 and 11 110 inds·km−2, respectively. The average fish biomass densities in the artificial reef area and control area were 665.94 and 406.85 kg·km−2, respectively. The artificial reef area showed a significant fish catching effect. The fishery resources were distributed mainly in water layers below 5 m, and those in reef areas had a wider vertical distribution range than those of the control area. The average target strength (TS) of the two survey voyages in the artificial fish reef area were greater than that in the control area, and more single targets were detected in the artificial fish reef area with a more concentrated distribution than in the control area. The results reveal the impact of artificial reefs on the redistribution of fish resources.
[1] |
MYTILINEOU C, HERRMANN B, MANTOPOULOU-PALOUKA D, et al. Escape, discard, and landing probability in multispecies Mediterranean bottom-trawl fishery[J]. ICES J Mar Sci, 2023, 80(3): 542-555. doi: 10.1093/icesjms/fsab048
|
[2] |
PELAGE L, BERTRAND A, FERREIRA B P, et al. Balanced harvest as a potential management strategy for tropical small-scale fisheries[J]. ICES J Mar Sci, 2021, 78(7): 2547-2561. doi: 10.1093/icesjms/fsab136
|
[3] |
KOSLOW J A. The role of acoustics in ecosystem-based fishery management[J]. ICES J Mar Sci, 2009, 66(6): 966-973. doi: 10.1093/icesjms/fsp082
|
[4] |
李永振, 陈国宝, 赵宪勇. 南海区多鱼种渔业资源声学评估[C]//我国专属经济区和大陆架勘测研究论文集. 北京: 海洋出版社, 2002: 391-397.
|
[5] |
李永振, 陈国宝, 赵宪勇, 等. 南海北部海域小型非经济鱼类资源声学评估[J]. 中国海洋大学学报 (自然科学版), 2005, 35(2): 206-212.
|
[6] |
陈国宝, 李永振, 赵宪勇, 等. 南海北部海域重要经济鱼类资源声学评估[J]. 中国水产科学, 2005, 12(4): 445-451.
|
[7] |
李娜娜, 陈国宝, 于杰, 等. 大亚湾杨梅坑人工鱼礁水域生物资源量声学评估[J]. 水产学报, 2011, 35(11): 1640-1649.
|
[8] |
林金錶. 南海北部大陆架外海区底拖网鱼类资源现存量及可捕量的探讨[J]. 海洋通报, 1983, 2(5): 55-65.
|
[9] |
曾雷, 唐振朝, 贾晓平, 等. 人工鱼礁对防城港海域小型岩礁性鱼类诱集效果研究[J]. 中国水产科学, 2019, 26(4): 783-795.
|
[10] |
SIMRAD. Simrad ER60 scientific echo sounder software reference manual[M]. Horten: Simrad Maritime As Kongsberg, 2008: 19-31.
|
[11] |
AGLEN A. Random errors of acoustic fish abundance estimates in relation to the survey grid density applied[J]. FAO Fish Rep, 1983, 300: 293-298.
|
[12] |
张俊, 陈丕茂, 陈国宝, 等. 基于Echoview声学数据后处理系统的背景噪声扣除方法[J]. 渔业科学进展, 2014, 35(1): 9-17.
|
[13] |
曾雷, 陈国宝, 王腾, 等. 大亚湾核电临近海域中国毛虾声学探测分析[J]. 中国水产科学, 2019, 26(6): 1029-1039.
|
[14] |
王腾, 黄洪辉, 张鹏, 等. 珠海桂山风电场水域渔业资源声学评估与空间分布[J]. 中国水产科学, 2020, 27(12): 1496-1504.
|
[15] |
郭禹, 李纯厚, 陈国宝. 南澳白沙湾海藻养殖区内外渔业资源声学评估[J]. 水产学报, 2018, 42(2): 226-235.
|
[16] |
赵宪勇, 陈毓桢, 李显森, 等. 多种类海洋渔业资源声学评估技术与方法[C]//我国专属经济区和大陆架勘测研究专项学术交流会论文集. 北京: 海洋出版社, 2002: 341-353.
|
[17] |
RUDSTAM L G, PARKER-STETTER S L, SULLIVAN P J, et al. Towards a standard operating procedure for fishery acoustic surveys in the Laurentian Great Lakes, North America[J]. ICES J Mar Sci, 2009, 66(6): 1391-1397. doi: 10.1093/icesjms/fsp014
|
[18] |
张俊, 陈丕茂, 房立晨, 等. 南海柘林湾—南澳岛海洋牧场渔业资源本底声学评估[J]. 水产学报, 2015, 39(8): 1187-1198.
|
[19] |
李斌, 陈国宝, 于杰, 等. 海南陵水湾口海域不同季节鱼类资源声学探查[J]. 水产学报, 2018, 42(4): 544-556.
|
[20] |
蔡研聪, 陈作志, 徐姗楠, 等. 北部湾二长棘犁齿鲷的时空分布特征[J]. 南方水产科学, 2017, 13(4): 1-10.
|
[21] |
SCHWARTZKOPF B D, COWAN J H. Seasonal and sex differences in energy reserves of red snapper Lutjanus campechanus on natural and artificial reefs in the northwestern Gulf of Mexico[J]. Fish Sci, 2017, 83(1): 13-22. doi: 10.1007/s12562-016-1037-1
|
[22] |
TAYLOR M D, BECKER A, LOWRY M B. Investigating the functional role of an artificial reef within an estuarine seascape: a case study of yellowfin bream (Acanthopagrus australis)[J]. Estuar Coast, 2018, 41(6): 1782-1792. doi: 10.1007/s12237-018-0395-6
|
[23] |
HJELLVIK V, HANDEGARD N O, ONA E. Correcting for vessel avoidance in acoustic-abundance estimates for herring[J]. ICES J Mar Sci, 2008, 65(6): 1036-1045. doi: 10.1093/icesjms/fsn082
|
[24] |
NEILSON J D, CLARK D W, MELVIN G D, et al. The diel-vertical distribution and characteristics of pre-spawning aggregations of pollock (Pollachius virens) as inferred from hydroacoustic observations: the implications for survey design[J]. ICES J Mar Sci, 2003, 60(4): 860-871. doi: 10.1016/S1054-3139(03)00068-7
|
[25] |
TORESEN R. Absorption of acoustic energy in dense herring schools studied by the attenuation in the bottom echo signal[J]. Fish Res, 1991, 10(3/4): 317-327.
|
[26] |
ENGÅS A, GODØ O R. The effect of different sweep lengths on the length composition of bottom-sampling trawl catches[J]. ICES J Mar Sci, 1989, 45(3): 263-268. doi: 10.1093/icesjms/45.3.263
|
[27] |
BETHKE E, ARRHENIUS F, CARDINALE M, et al. Comparison of the selectivity of three pelagic sampling trawls in a hydroacoustic survey[J]. Fish Res, 1999, 44(1): 15-23. doi: 10.1016/S0165-7836(99)00054-5
|
[28] |
BUTCHER A, MAYER D, SMALLWOOD D, et al. A comparison of the relative efficiency of ring, fyke, fence nets and beam trawling for estimating key estuarine fishery populations[J]. Fish Res, 2005, 73(3): 311-321. doi: 10.1016/j.fishres.2005.01.014
|
[29] |
SMITH J B, JONAS J L, HAYES D B, et al. Comparison of catch in multifilament and monofilament gill nets in a long-term survey on Lake Michigan[J]. J Great Lakes Res, 2022, 48(2): 565-571. doi: 10.1016/j.jglr.2022.01.004
|
[30] |
SUURONEN P, LEHTONEN E, WALLACE J. Avoidance and escape behaviour by herring encountering midwater trawls[J]. Fish Res, 1997, 29(1): 13-24. doi: 10.1016/S0165-7836(96)00523-1
|
[31] |
SKÚVADAL F B, THOMEN B, JACOBSEN J A. Escape of blue whiting (Micromesistius poutassou) and herring (Clupea harengus) from a pelagic survey trawl[J]. Fish Res, 2011, 111(1/2): 65-73.
|
[32] |
JŮZA T, RAKOWITZ G, DRAŠTÍK V, et al. Avoidance reactions of fish in the trawl mouth opening in a shallow and turbid lake at night[J]. Fish Res, 2013, 147: 154-160. doi: 10.1016/j.fishres.2013.05.008
|
1. |
张凯,张麟,彭凌风,陈鑫,刘合刚,胡志刚. 基于性别差异的少棘巨蜈蚣蛋白组和转录组联合分析. 时珍国医国药. 2024(04): 892-898 .
![]() | |
2. |
韩财安,李安东,周美玉,廖怀生. 小龙虾幼苗培育关键技术. 江西水产科技. 2022(05): 30-31+34 .
![]() |