Citation: | CHEN Guobao, CHENG Gao, NIU Lulian, ZOU Jianwei, YU Jie, CHEN Pimao. Application of fishery acoustic frequency difference technology in fishery resource assessment of marine ranching in southern sea area of Yintan, Guangxi[J]. South China Fisheries Science, 2025, 21(2): 38-46. DOI: 10.12131/20240129 |
To improve the accuracy of fisheries resource assessment in marine ranching, we conducted an acoustic survey in the marine ranching demonstration area in the southern sea area of Yintan, Guangxi in January 2023, by using two advanced split-beam echo sounders: the EK80 (Operating frequency: 120 kHz) and the EY60 (Operating frequency: 200 kHz), with the biological sampling through bottom trawling. According to the comparison between frequency-difference noise-reduction techniques and traditional noise-reduction methods in the analysis of fisheries acoustic data, compared with traditional techniques, the frequency-difference noise reduction had a higher average target strength (TS) with a smaller variation range when tracking single targets, demonstrating greater technical precision and objectivity. When assessing the fish density across different transects, we found that the average count density obtained through frequency-difference noise reduction was consistently lower than that through traditional methods, showing its reliability in handling acoustic noise in fisheries assessment. For dominant species, the frequency-difference noise reduction showed insignificant differences in the count density for larger individuals, but a significant increase for smaller individuals, highlighting its advantage in enhancing assessment accuracy for fish density. Therefore, using volume backscattering strength (Sv) images processed with frequency-difference noise reduction for fisheries resource density assessment can more effectively eliminate interfering noise and accurately detect smaller biological targets.
[1] |
LA H S, LEE H B, KANG D H, et al. Ex situ echo sounder target strengths of ice krill Euphausia crystallorophias[J]. Chin J Oceanol Limn, 2015, 33(3): 802-808. doi: 10.1007/s00343-015-4064-3
|
[2] |
DRAŠTíK V, KUBEČKA J, TUŠER M, et al. The effect of hydropower on fish stocks: comparison between cascade and non-cascade reservoirs[J]. Hydrobiologia, 2008, 609(1): 25-36. doi: 10.1007/s10750-008-9393-1
|
[3] |
朱德山, IVERSEN S A. 黄、东海鳀鱼及其他经济鱼类资源声学评估的调查研究: “北斗”号1984年11月至1989年1月调查研究报告[J]. 海洋水产研究, 1990(11): 1-143.
|
[4] |
汤勇. 中国渔业资源声学评估研究与进展[J]. 大连海洋大学学报, 2023, 38(2): 185-195.
|
[5] |
MCKELVEY D R. The use of two freqencies to interpret acoustic scattering layers[J]. J Acoust Soc Am, 1998, 103(5): 3069.
|
[6] |
BRIERLEY A, WATKINS J. Acoustic targets at South Georgia and the south Orkney Islands during a season of krill scarcity[J]. Mar Ecol Prog Ser, 1996, 138(1/2/3): 51-61.
|
[7] |
KANG M, FURUSAWA M, MIYASHITA K. Effective and accurate use of difference in mean volume backscattering strength to identify fish and plankton[J]. ICES J Mar Sci, 2002, 59(4): 794-804. doi: 10.1006/jmsc.2002.1229
|
[8] |
KANG M, HONDA S, OSHIMA T. Age characteristics of walleye pollock school echoes[J]. ICES J Mar Sci, 2006, 63(8): 1465-1476. doi: 10.1016/j.icesjms.2006.06.007
|
[9] |
王新良, 赵宪勇, 左涛, 等. 黄海太平洋磷虾回波映像识别与资源密度评估[J]. 水产学报, 2016, 40(7): 1080-1088.
|
[10] |
张俊, 陈作志, 陈国宝, 等. 南海鸢乌贼水声学测量和评估相关技术研究[J]. 南方水产科学, 2014, 10(6): 1-11. doi: 10.3969/j.issn.2095-0780.2014.06.001
|
[11] |
李栋, 蔺丹清, 王召根, 等. 基于水声学频差技术的镇江长江豚类省级自然保护区鱼类资源时空特征[J]. 水生生物学报, 2023, 47(1): 121-132. doi: 10.7541/2022.2021.0314
|
[12] |
AGLEN A. Random errors of acoustics fish abundance estimates in relation to the survey grid density applied[J]. FAO Fish Rep, 1983, 300: 293-298.
|
[13] |
SCOTT M, SMITH J A, LOWRY M B, et al. The influence of an offshore artificial reef on the abundance of fish in the surrounding pelagic environment[J]. Mar Freshw Res, 2015, 66(5): 429-437.
|
[14] |
牛麓连, 陈国宝, 邹建伟, 等. 广西银滩南部海域海洋牧场渔业资源评估[J]. 南方水产科学, 2024, 20(5): 53-62. doi: 10.12131/20230236
|
[15] |
张俊, 陈丕茂, 陈国宝, 等. 基于Echoview声学数据后处理系统的背景噪声扣除方法[J]. 渔业科学进展, 2014, 35(1): 9-17. doi: 10.3969/j.issn.1000-7075.2014.01.002
|
[16] |
de ROBERTIS A, HIGGINBOTTOM I. A post-processing technique to estimate the signal-to-noise ratio and remove echosounder background noise[J]. ICES J Mar Sci, 2007, 64(6): 1282-1291. doi: 10.1093/icesjms/fsm112
|
[17] |
DEBERTIN A J. Estimating the biomass of a mixed species complex using hydroacoustics and catch data from the Bay of Fundy and Scotian Shelf summer ecosystem survey[J]. Can J Fish Aquat Sci, 2020, 77(7): 1101-1116. doi: 10.1139/cjfas-2019-0152
|
[18] |
COX M J, SMITH A J R, BRIERLEY A S, et al. Scientific echosounder data provide a predator's view of Antarctic krill (Euphausia superba)[J]. Sci Data, 2023, 10(1): 284. doi: 10.1038/s41597-023-02187-y
|
[19] |
WATKINS J L, BRIERLEY A S. A post-processing technique to remove background noise from echo integration data[J]. ICES J Mar Sci, 1996, 53(2): 339-344. doi: 10.1006/jmsc.1996.0046
|
[20] |
赵宪勇, 陈毓桢, 李显森, 等. 多种类海洋渔业资源声学评估技术与方法[C]//我国专属经济区和大陆架勘测研究专项学术交流会论文集. 北京: 海洋出版社, 2002: 341-353.
|
[21] |
RUDSTAM L G, PARKER-STETTER S L, SULLIVAN P J, et al. Towards a standard operating procedure for fishery acoustic surveys in the Laurentian Great Lakes, North America[J]. ICES J Mar Sci, 2009, 66(6): 1391-1397. doi: 10.1093/icesjms/fsp014
|
[22] |
张俊, 陈丕茂, 房立晨, 等. 南海柘林湾: 南澳岛海洋牧场渔业资源本底声学评估[J]. 水产学报, 2015, 39(8): 1187-1198.
|
[23] |
李斌, 陈国宝, 于杰, 等. 海南陵水湾口海域不同季节鱼类资源声学探查[J]. 水产学报, 2018, 42(4): 544-556.
|
[24] |
KORNELIUSSEN R J. Measurement and removal of echo integration noise[J]. ICES J Mar Sci, 2000, 57(4): 1204-1217. doi: 10.1006/jmsc.2000.0806
|
[25] |
MITSON R B, KNUDSEN H P. Causes and effects of underwater noise on fish abundance estimation[J]. Aquat Living Resour, 2003, 16(3): 255-263. doi: 10.1016/S0990-7440(03)00021-4
|
[26] |
RANA M S, ANOWER M S, SIRAJ S M N, et al. A signal processing approach of fish abundance estimation in the sea[C]//2014 9th International Forum on Strategic Technology (IFOST). IEEE, 2014: 87-90.
|
[27] |
LOPEZ J, MORENO G, BOYRA G, et al. A model based on data from echosounder buoys to estimate biomass of fish species associated with fish aggregating devices[J]. Fish Bull, 2016, 114(2): 166-178. doi: 10.7755/FB.114.2.4
|
[28] |
TRENKEL V M, RESSLER P H, JECH M, et al. Underwater acoustics for ecosystem-based management: state of the science and proposals for ecosystem indicators[J]. Mar Ecol Prog Ser, 2011, 442: 285-301. doi: 10.3354/meps09425
|
[29] |
JURVELIUS J, KNUDSEN F R, BALK H, et al. Echo-sounding can discriminate between fish and macroinvertebrates in fresh water[J]. Freshw Biol, 2008, 53(5): 912-923. doi: 10.1111/j.1365-2427.2007.01944.x
|
[30] |
LOGERWELL E A, WILSON C D. Species discrimination of fish using frequency-dependent acoustic backscatter[J]. ICES J Mar Sci, 2004, 61(6): 1004-1013. doi: 10.1016/j.icesjms.2004.04.004
|
[31] |
HEDGEPETH J B, GALLUCCI V F, THORNE R E, et al. The application of some acoustic methods for stock assessment for small-scale fisheries[M]//Stock Assessment. Boca Raton: CRC Press, 2023: 271-353.
|
[32] |
武智, 李跃飞, 朱书礼, 等. 基于渔业声学调查的珠江东塔产卵场鱼类栖息地适宜性研究[J]. 南方水产科学, 2023, 19(3): 11-18. doi: 10.12131/20220283
|
[33] |
解明阳, 柳彬, 陈新军. 基于深度学习的西北太平洋柔鱼渔场预测[J]. 水产学报, 2024, 48(11): 61-72.
|
[34] |
田思泉, 柳晓雪, 花传祥, 等. 南海渔业资源状况及其管理挑战[J]. 上海海洋大学学报, 2024, 33(3): 786-798.
|
[35] |
程高, 陈国宝, 陈丕茂, 等. 基于声学技术定点监测海洋牧场鱼类资源昼夜变化研究[J]. 南方水产科学, 2024, 20(5): 63-70. doi: 10.12131/20240126
|
[36] |
张辉. 渔业声学数据后处理软件现状评述与展望: 以Sonar5-Pro为例[J]. 渔业信息与战略, 2024, 39(1): 29-38.
|
[37] |
杨洋, 朱国平, 陈新军. 基于文献计量的渔业声学研究状况分析[J]. 海洋渔业, 2020, 42(4): 476-489. doi: 10.3969/j.issn.1004-2490.2020.04.011
|
[38] |
张崇良, 徐宾铎, 薛莹, 等. 渔业资源增殖评估研究进展与展望[J]. 水产学报, 2022, 46(8): 1509-1524.
|
[39] |
吴鹏, 刘永, 肖雅元, 等. 春季珠江口万山群岛毗邻海域渔业生态环境状况评价[J]. 南方水产科学, 2022, 18(5): 1-8. doi: 10.12131/20210332
|
[40] |
ZWOLINSKI J P, DEMER D A, CUTTER Jr G R, et al. Building on fisheries acoustics for marine ecosystem surveys[J]. Oceanography, 2014, 27(4): 68-79. doi: 10.5670/oceanog.2014.87
|
[41] |
SCHWING F B. Modern technologies and integrated observing systems are "instrumental" to fisheries oceanography: a brief history of ocean data collection[J]. Fish Oceanogr, 2023, 32(1): 28-69. doi: 10.1111/fog.12619
|
[42] |
张俊, 邱永松, 陈作志, 等. 南海外海大洋性渔业资源调查评估进展[J]. 南方水产科学, 2018, 14(6): 118-127. doi: 10.12131/20180037
|
[43] |
KANG M. Current technology of fisheries acoustics based on analyzed acoustic data using Sonar Data's Echoview[C]//Proceedings of ACOUSTICS 2006. ICASSP, 2006: 493-497.
|
[44] |
LI D L, DU Z Z, WANG Q, et al. Recent advances in acoustic technology for aquaculture: a review[J]. Rev Aquac, 2024, 16(1): 357-381. doi: 10.1111/raq.12842
|