CHENG Gao, CHEN Guobao, CHEN Pimao, TONG Fei, NIU Lulian, CHEN Yuxiang. Study on diurnal and nocturnal variation of fish resources in marine ranching by fixed-point monitoring based on acoustic technology[J]. South China Fisheries Science, 2024, 20(5): 63-70. DOI: 10.12131/20240126
Citation: CHENG Gao, CHEN Guobao, CHEN Pimao, TONG Fei, NIU Lulian, CHEN Yuxiang. Study on diurnal and nocturnal variation of fish resources in marine ranching by fixed-point monitoring based on acoustic technology[J]. South China Fisheries Science, 2024, 20(5): 63-70. DOI: 10.12131/20240126

Study on diurnal and nocturnal variation of fish resources in marine ranching by fixed-point monitoring based on acoustic technology

More Information
  • Received Date: June 04, 2024
  • Revised Date: August 17, 2024
  • Accepted Date: August 22, 2024
  • Available Online: August 25, 2024
  • To thoroughly evaluate the effectiveness of artificial reefs in marine ranching, and to promote the sustainable use and effective management of marine resources, we conducted the fixed-point acoustic monitoring of fish resources by using a split-beam scientific echosounder (Simrad EK80) in two research areas: the artificial reef area of Zhuhai Dazhizhou Marine Ranch in July 2023 and the artificial reef area of the southern Beihai Yintan Marine Ranch in December 2023. The study systematically analyzed the distribution of target strength (TS), diurnal variations in the nautical area scattering coefficient (NASC), and current conditions within the monitored marine areas. The results show that in the Beihai artificial reef area, the TS of fish resources ranged from −51.9 to −31.0 dB, with an average of −44.8 dB. In the Zhuhai Dazhizhou Marine Ranch, the TS of fish resources ranged from −51.7 to −25.5 dB, with an average of −45.4 dB. Diurnal monitoring data indicate that the TS variation range and average values of fish resources in the artificial reef areas were generally better than those in the control areas, with fish resources primarily distributed at depths greater than 5 meters, more abundant in the artificial reef areas. In the Beihai artificial reef area, the correlation coefficient between the bottom NASC and current speed was 0.416 74, indicating a significant positive correlation between them (p<0.05). The results demonstrate the diurnal and nocturnal variation patterns in the fishery resources of marine ranching, further enrich the research methodology for monitoring the fishery resources of marine ranching, and provide a reference basis for the dynamic management of the fishery resources of marine ranching.

  • [1]
    汤勇. 中国渔业资源声学评估研究与进展[J]. 大连海洋大学学报, 2023, 38(2): 185-195.
    [2]
    李哲, 朱文斌, 陈峰, 等. 近年我国渔业资源声学评估研究进展[J]. 浙江海洋大学学报(自然科学版), 2021, 40(1): 80-85, 92.
    [3]
    李淼, 许友伟, 孙铭帅, 等. 拉尼娜事件前后北部湾鱼类群落结构变化研究[J]. 南方水产科学, 2023, 19(2): 1-11. doi: 10.12131/20220144
    [4]
    SMITH J, JONES M. Acoustic monitoring of fish populations in marine protected areas[J]. J Mar Sci Technol, 2020, 25(3): 123-134.
    [5]
    房恩军, 王宏, 曾祥茜, 等. 天津市大神堂海洋牧场海域人工鱼礁区声学初步调查[J]. 天津农业科学, 2023, 29(10): 42-47, 52. doi: 10.3969/j.issn.1006-6500.2023.10.008
    [6]
    杨洋, 朱国平, 陈新军. 基于文献计量的渔业声学研究状况分析[J]. 海洋渔业, 2020, 42(4): 476-489. doi: 10.3969/j.issn.1004-2490.2020.04.011
    [7]
    王炜祺, 童剑锋, 薛铭华. 商业渔船渔业声学数据采集及应用研究进展[J]. 电声技术, 2022, 46(12): 50-53.
    [8]
    张超. 基于多波束测深仪和走航式ADCP的西太平洋声学散射层研究[D]. 青岛: 国家海洋局第一海洋研究所, 2017: 27-33.
    [9]
    屈泰春, 黄洪亮, 汤勇, 等. 渔业声学数据后处理中噪声剔除的研究进展[J]. 渔业信息与战略, 2013, 28(3): 208-213. doi: 10.3969/j.issn.1004-8340.2013.03.006
    [10]
    马燕芹, 司纪锋. 基于水声技术的黄海近海鱼类活动定点监测研究[J]. 渔业现代化, 2016, 43(4): 70-75. doi: 10.3969/j.issn.1007-9580.2016.04.013
    [11]
    LAWRENCE M J, ARMSTRONG E, GORDON J, et al. Passive and active, predator and prey: using acoustics to study interactions between cetaceans and forage fish[J]. ICES J Mar Sci, 2016, 73(8): 2075-2084. doi: 10.1093/icesjms/fsw013
    [12]
    王东旭. 南海中部深海散射层声学特性及时空分布研究[D]. 大连: 大连海洋大学, 2017: 29-30.
    [13]
    张丽媛, 杨剑虹, 熊清海, 等. 基于水声学的阳宗海鱼类行为特征及其资源评估[J]. 南方水产科学, 2024, 20(1): 110-119. doi: 10.12131/20230082
    [14]
    费姣姣, 李成, 张健, 等. 中西太平洋海山特征对延绳钓渔业和围网渔业黄鳍金枪鱼CPUE的影响[J]. 南方水产科学, 2024, 20(2): 1-10. doi: 10.12131/20230200
    [15]
    吴鹏, 刘永, 肖雅元, 等. 春季珠江口万山群岛毗邻海域渔业生态环境状况评价[J]. 南方水产科学, 2022, 18(5): 1-8. doi: 10.12131/20210332
    [16]
    武智, 李跃飞, 朱书礼, 等. 基于渔业声学调查的珠江东塔产卵场鱼类栖息地适宜性研究[J]. 南方水产科学, 2023, 19(3): 11-18. doi: 10.12131/20220283
    [17]
    王普泽, 宋聃, 张尹哲, 等. 基于水声学评估的博斯腾湖鱼类时空分布研究[J]. 中国水产科学, 2023, 30(5): 525-532. doi: 10.12264/JFSC2022-0359
    [18]
    侯宇伟, 刘世刚, 李渊, 等. 基于声学方法的2019年夏季南海中南部重要中上层经济鱼类资源评估[J]. 海洋渔业, 2022, 44(3): 267-279. doi: 10.3969/j.issn.1004-2490.2022.03.002
    [19]
    郭禹, 李纯厚, 陈国宝. 南澳白沙湾海藻养殖区内外渔业资源声学评估[J]. 水产学报, 2018, 42(2): 226-235.
    [20]
    张俊. 基于声学数据后处理系统的黄海鳀鱼资源声学评估[D]. 上海: 上海海洋大学, 2012: 14-22.
    [21]
    王腾, 黄洪辉, 张鹏, 等. 珠海桂山风电场水域渔业资源声学评估与空间分布[J]. 中国水产科学, 2020, 27(12): 1496-1504.
    [22]
    张俊, 王新良, 赵宪勇, 等. 渔业声学数据后处理中积分阈的选择与优化I: 目标离散分布状态下积分阈的确定[J]. 渔业科学进展, 2011, 32(4): 41-47. doi: 10.3969/j.issn.1000-7075.2011.04.007
    [23]
    张俊, 陈丕茂, 陈国宝, 等. 基于Echoview声学数据后处理系统的背景噪声扣除方法[J]. 渔业科学进展, 2014, 35(1): 9-17. doi: 10.3969/j.issn.1000-7075.2014.01.002
    [24]
    李娜娜, 陈国宝, 于杰, 等. 大亚湾杨梅坑人工鱼礁水域生物资源量声学评估[J]. 水产学报, 2011, 35(11): 1640-1649.
    [25]
    刘世刚, 汤勇, 陈国宝, 等. 南海深海声学散射层垂直分布和昼夜变化初步研究[J]. 海洋科学进展, 2015, 33(2): 173-181. doi: 10.3969/j.issn.1671-6647.2015.02.005
    [26]
    万树杰, 陈新军. 西南印度洋深海散射层昼夜垂直迁移特征研究[J]. 海洋学报 (中文版), 2024, 46(1): 53-63.
    [27]
    BRASSARD S G, RAUTIO M, BERTOLO A. Vertical distribution patterns of zooplankton across a gradient of fish predation in boreal lakes[J]. Freshw Biol, 2023, 68(4): 588-608. doi: 10.1111/fwb.14049
    [28]
    WANG Y C, TSAI S, CHEN W Y. Diel vertical distribution patterns of pelagic fish larvae in Yilan Bay, Taiwan[J]. J Mar Sci Technol, 2022, 29(6): 776-783. doi: 10.51400/2709-6998.2557
    [29]
    陈丕茂, 舒黎明, 袁华荣, 等. 国内外海洋牧场发展历程与定义分类概述[J]. 水产学报, 2019, 43(9): 1851-1869.
    [30]
    PERROT Y, BREHMER P, HABASQUE J, et al. Matecho: an opensource tool for processing fisheries acoustics data[J]. Acoust Aust, 2018, 46(2): 241-248. doi: 10.1007/s40857-018-0135-x
    [31]
    BAO Z. Marine ranching: paving the way for a sustainable blue granary[J]. Anim Res One Health, 2023, 2(2): 119-120.
    [32]
    de ROBERTIS A, HIGGINBOTTOM I. A post-processing technique to estimate the signal-to-noise ratio and remove echosounder background noise[J]. ICES J Mar Sci, 2007, 64(6): 1282-1291. doi: 10.1093/icesjms/fsm112
    [33]
    陈志坚, 万芃, 李勇航, 等. 水面无人艇侧扫声纳技术在人工鱼礁调查中的应用[J]. 珠江水运, 2024(12): 17-20.
    [34]
    WANG L, LIANG Z L, GUO Z S, et al. Distribution of nitrogen (N) and phosphorus (P) in seasonal low-oxygen marine ranching in northern Yellow Sea, China[J]. Environ Sci Poll Res Int, 2023, 30(23): 64179-64190. doi: 10.1007/s11356-023-26932-3
    [35]
    MAEDA R. Analysis of fishery activities by fixed spot method: a case in Fuke District, Misaki Town, Osaka Prefecture[J]. Jpn J Human Geogr, 2020, 72(2): 131-147.
    [36]
    KLEMAS V. Fisheries applications of remote sensing: an overview[J]. Fish Res, 2013, 148: 124-136. doi: 10.1016/j.fishres.2012.02.027
    [37]
    谢笑艳, 陈丕茂, 佟飞, 等. 珠海外伶仃岛海域海洋牧场选址探讨[J]. 南方水产科学, 2022, 18(5): 18-29. doi: 10.12131/20210241
    [38]
    FERNANDES G P, COPLAND P, GARCIA R, et al. Additional evidence for fisheries acoustics: small cameras and angling gear provide tilt angle distributions and other relevant data for mackerel surveys[J]. ICES J Mar Sci, 2016, 73(8): 2009-2019. doi: 10.1093/icesjms/fsw091
    [39]
    CHEN X J. Effects of global climate changes on marine fishery resources[M]//Theory and method of fisheries forecasting. Singapore: Springer Nature Singapore, 2022: 173-199.
    [40]
    王雨微, 黄二辉, 许德伟. 海洋生物声散射层研究现状综述[J]. 海洋开发与管理, 2021, 38(9): 43-48.
    [41]
    XU S, ZHAI Z G, GAO B T, et al. Mining the distribution of fishery resources to determine the scope of aquatic ecological protection[C]//2021 IEEE International Conference on Electronic Technology, Communication and Information (ICETCI). IEEE, 2021: 30-34.
    [42]
    BROWN T J, GREEN S P. Challenges and advancements in fish species identification using acoustic imagery[J]. Mar Technol Soc J, 2022, 56(4): 78-87.
  • Related Articles

    [1]LUO Yimin, ZHANG Kai, XIE Jun, WANG Guangjun, GONG Wangbao, LI Zhifei, XIA Yun, TIAN Jingjing, LI Hongyan, XIE Wenping, YU Ermeng. Effects of complex carbon sources on vertical distribution and exchange flux of dissolved nutrients at sediment-water interface[J]. South China Fisheries Science, 2025, 21(2): 90-101. DOI: 10.12131/20240214
    [2]CHEN Guobao, CHENG Gao, NIU Lulian, ZOU Jianwei, YU Jie, CHEN Pimao. Application of fishery acoustic frequency difference technology in fishery resource assessment of marine ranching in southern sea area of Yintan, Guangxi[J]. South China Fisheries Science, 2025, 21(2): 38-46. DOI: 10.12131/20240129
    [3]WANG Wenzhuo, ZHANG Chun, BO Ping, WANG Haoran, JIA Shuo, WANG Nana. Research on acoustic target strength of Larimichthys crocea in South China Sea based on Kirchhoff Approximation Model[J]. South China Fisheries Science, 2024, 20(6): 95-103. DOI: 10.12131/20240084
    [4]HUANG Shuo, CHEN Yuanchao, LI Danjie, LI Lianxiang. Diversity and vertical variation of plankton in Lugu Lake[J]. South China Fisheries Science, 2022, 18(1): 22-32. DOI: 10.12131/20210074
    [5]DANG Yingchao, DAI Xiaojie, WU Feng. Effects of vertical distribution and soaking time of tuna longline fishing hooks on catches in North Pacific[J]. South China Fisheries Science, 2020, 16(3): 86-93. DOI: 10.12131/20190252
    [6]FAN Jiangtao, FENG Xue, CHEN Zuozhi. Fishing ground analysis of Japanese horse mackerel in northern South China Sea based on vertical structure of water temperature[J]. South China Fisheries Science, 2018, 14(2): 124-128. DOI: 10.3969/j.issn.2095-0780.2018.02.017
    [7]ZENG Lei, CHEN Guobao, YU Jie. Acoustic assessment of fishery resources and spatial distribution in Nan'ao Island area[J]. South China Fisheries Science, 2018, 14(2): 26-35. DOI: 10.3969/j.issn.2095-0780.2018.02.004
    [8]YU Jie, CHEN Guobao, ZHANG Kui, CHEN Zuozhi. Vertical distribution of summer chlorophyll a concentration in the middle South China Sea[J]. South China Fisheries Science, 2016, 12(4): 1-8. DOI: 10.3969/j.issn.2095-0780.2016.04.001
    [9]ZHANG Jun, CHEN Zuozhi, CHEN Guobao, QIU Yongsong, LIU Shigang, YAO Zhuang. Hydroacoustic detection and estimation techniques of squid Sthenoteuthis oualaniensis in the South China Sea[J]. South China Fisheries Science, 2014, 10(6): 1-11. DOI: 10.3969/j.issn.2095-0780.2014.06.001
    [10]ZHU Sixi, ZHANG Feijun, YANG Hongli. Distribution characteristics of benthic algae in rocky intertidal zones of Zhongjieshan Archipelago of Zhejiang Province in summer and autumn[J]. South China Fisheries Science, 2011, 7(2): 14-21. DOI: 10.3969/j.issn.2095-0780.2011.02.003
  • Cited by

    Periodical cited type(9)

    1. 聂艺,卢钰博,王旭明,刘晓玲,许修明,程敬伟,崔龙波. 烟台芝罘湾贝、参单养和贝-参-鱼复合养殖对环境的影响比较. 烟台大学学报(自然科学与工程版). 2025(01): 55-63 .
    2. 傅建军,安睿,朱文彬,王兰梅,罗明坤,董在杰. 套养池塘主要养殖阶段浮游生物的群落结构特征. 水产学杂志. 2024(01): 104-112 .
    3. 宋光同,王芬,徐笑娜,朱成骏,陈祝,李翔,周翔,叶圣陶,蒋业林. 中华鳖养殖过程中浮游生物群落结构的演变. 中国农学通报. 2024(08): 157-164 .
    4. 季雨来,吴召仕,张京,刘鹏,裴鹏娜,张帅,黄佳聪. 太湖流域平原农业区典型圩塘浮游植物群落特征及其影响因子. 湖泊科学. 2024(05): 1380-1392 .
    5. 闵文武,王龙燕,陈飞雄,周其椿. 集装箱养殖生态净化池塘中浮游植物群落结构多样性分析. 水产科技情报. 2024(05): 302-310 .
    6. 蒲炜佳,董世鹏,张东旭,于力业,谢宜成,徐羡,王芳,李由明. 三疣梭子蟹池塘综合养殖系统浮游植物群落结构及其与环境因子的关系. 中国水产科学. 2022(04): 549-561 .
    7. 侯德昌,张莹莹,魏文志. 不同中华鳖养殖模式浮游植物功能群特征及水环境评价. 安徽农业科学. 2022(09): 96-99+170 .
    8. 马景雪,张培玉,王宗兴,郑明刚,高萍,曲凌云,王波,郑风荣. 青岛崂山湾近海扇贝养殖区细菌多样性及环境因子分析. 海洋科学进展. 2022(02): 307-319 .
    9. 张晓蕾,王强,张国奇,周陆,李廷发,张玉,赵思雅. 池塘循环流水养殖模式中浮游植物群落结构的空间变化研究. 南方水产科学. 2021(03): 36-45 . 本站查看

    Other cited types(2)

Catalog

    Recommendations
    低盐水体so4 2−/cl− 胁迫下凡纳滨对虾生长、肝胰腺与鳃组织结构及酶活力比较
    贺铮 et al., 南方水产科学, 2025
    荷-鱼共养与常规池塘养殖模式下环境微生物群落比较研究
    刘美琦 et al., 南方水产科学, 2025
    基于轴向特征校准和时间段网络的鱼群摄食强度分类模型研究
    徐波 et al., 南方水产科学, 2024
    红鳍笛鲷幼鱼对不同开孔形状和尺寸人工鱼礁模型的行为偏好探究
    江满菊 et al., 南方水产科学, 2024
    长湖草/藻型湖区浮游植物群落特征及与环境因子的关系
    水生态学杂志, 2024
    陆水水库浮游植物群落结构特征及其影响因素
    水生态学杂志, 2024
    Non-monotonic changes in asian water towers' streamflow at increasing warming levels
    Cui, Tong et al., NATURE COMMUNICATIONS, 2023
    Benthic composition changes on coral reefs at global scales
    Tebbett, Sterling B., NATURE ECOLOGY & EVOLUTION, 2023
    Variation of sediment grain size parameters, fish diversity, and phytoplankton richness in relation to sand and silt fractions in estuaries
    GEOLOGY, ECOLOGY, AND LANDSCAPES, 2024
    Integration of immobilized microorganisms with a groundwater circulation well for the remediation of naphthalene-contaminated aquifers
    JOURNAL OF CLEANER PRODUCTION, 2025
    Powered by
    Article views (901) PDF downloads (46) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return