Citation: | ZHANG Jun, CHEN Zuozhi, CHEN Guobao, QIU Yongsong, LIU Shigang, YAO Zhuang. Hydroacoustic detection and estimation techniques of squid Sthenoteuthis oualaniensis in the South China Sea[J]. South China Fisheries Science, 2014, 10(6): 1-11. DOI: 10.3969/j.issn.2095-0780.2014.06.001 |
According to the acoustic survey data of squid (Sthenoteuthis oualaniensis) in the South China Sea in 2013 obtained by Simrad EK60 (38 kHz, 120 kHz) and Simrad EY60 (70 kHz, 120 kHz) scientific echosounders, we investigated the target strength (TS) and spatial distribution of squid, interference of zooplankton, potential of dB difference technique in the acoustic identification. The results reveal that the TS of squid could be measured by in situ method with light-falling net as biological sampling device. Squid echo was not obvious under natural light condition, but the density of squid increased significantly when the light was on. Before 22: 00, the squids mainly assembled in layers at 10~50 m and 55~80 m, while after 22: 00, the squids assembled in layers at 10~35 m, 50~75 m and 115~155 m. Zooplankton and pelagic fish caused considerable interference in the acoustic estimation especially at night, so different thresholds should be selected during different time periods. The dB difference technique which might be important in discriminating squid echogram should be studied further.
[1] |
ROPER C F, SWEENEY M J, NAUEN C E. FAO species catalogue. Vol. 3. Cephalopods of the world. An annotated and illustrated cataloge of species of interest to fisheries[J]. FAO Fishery Synop, 1984, 3(1): 377.
|
[2] |
余为, 陈新军. 印度洋西北海域鸢乌贼9~10月栖息地适宜指数研究[J]. 广东海洋大学学报, 2013, 32(6): 74-80. https://kns.cnki.net/kcms2/article/abstract?v=WStw-PbchozcMhXVnHftrDBjQmzMg3SnWvGPkStqRE_CdjoRSmtAgwAINra82JD36Lkj1qIUrdjtSFaTvjOLfd5Km7qwjxSCVeupyFl_ElYS93IgJfZpLndelN9wj51t6BXMBS5YnYGNaYk8HO7bvp7U9EVkyvNYDtkLlRybGJXDUsQf0MDEeOAkFhyk-4LR&uniplatform=NZKPT&language=CHS
|
[3] |
陈新军, 刘必林, 王尧耕. 世界头足类[M]. 北京: 海洋出版社, 2009: 312-314.
|
[4] |
刘必林, 陈新军, 钟俊生. 采用耳石研究印度洋西北海域鸢乌贼的年龄、生长和种群结构[J]. 大连水产学院学报, 2009, 24(3): 206-215. doi: 10.3969/j.issn.1000-9957.2009.03.004
|
[5] |
范江涛, 冯雪, 邱永松, 等. 南海鸢乌贼生物学研究进展[J]. 广东农业科学, 2013, 40(23): 122-128. doi: 10.3969/j.issn.1004-874X.2013.23.030
|
[6] |
杨权, 李永振, 张鹏, 等. 基于灯光罩网法的南海鸢乌贼声学评估技术研究[J]. 水产学报, 2013, 37(7): 1032-1039. https://kns.cnki.net/kcms2/article/abstract?v=WStw-PbchoyiRwJJKn8AMipjOTo4chI8yVasYZ4XlCzvjO6psCJYJIgDn--ZcJdXGHLZcVZ0Z2tfgP-NIBbCkgJycHrO1HDNK91zu3_NdMLKYZ-9xwoqqg2sUpzK7PpQlh7N9XfhOxB68LBJvA3sg47uxcpVSjvWTQQBuVmCK9fzEW6hPvQwu0lYYIozj9KI&uniplatform=NZKPT&language=CHS
|
[7] |
张鹏, 杨吝, 张旭丰, 等. 南海金枪鱼和鸢乌贼资源开发现状及前景[J]. 南方水产科学, 2010, 6(1): 68-74. https://kns.cnki.net/kcms2/article/abstract?v=WStw-PbchowmPOIaSj_-bkxf2F_V6gXRiGtWwQXhq0K6nU8FTUSP0wAi2Ri6Jl8Fr6dQqQK_TWGzoO4iJAEf8MzpM8NpFRBcnJWqk3v_D9C1V5__VAoT2C0tSGIpD9AniupgZ3zkgK0fqilgDHtE6eeYQrS_AAJgT0dJLQ15Ig4PPMeOCuuWq--ymUu9GKs3&uniplatform=NZKPT&language=CHS
|
[8] |
颜云榕, 冯波, 卢伙胜, 等. 南沙群岛北部海域鸢乌贼(Sthenoteuthis oualaniensis)夏季渔业生物学研究[J]. 海洋与湖沼, 2012, 43(6): 1177-1187. https://kns.cnki.net/kcms2/article/abstract?v=WStw-PbchoxrwxXMztl5Z52vvp6pAjf-A63L3vRPRm7u3LUpqCXbZ7GDApkmwJL6R7AeMJSL6o6yQyGiy4dt_pG-7pklPSUj0p-ryggchBfyHfTv592Qzkbo1_IP5ULBBnjZj1UBROsgohSK1LWDwKKayeCIhNQ85MApJcYn9QhKMeMswwIYjXe_S65u2wQe&uniplatform=NZKPT&language=CHS
|
[9] |
贾晓平, 李永振, 李纯厚, 等. 南海专属经济区和大陆架渔业生态环境与渔业资源[M]. 北京: 科学出版社, 2004: 385-391.
|
[10] |
CAILLIET G M, VAUGHAN D L. A review of the methods and problems of quantitative assessment of Loligo opalescens[J]. Biol Oceanogr, 1983, 2(4): 379-400. https://kns.cnki.net/kcms2/article/abstract?v=WStw-Pbchow1xiFWd64WwsOW9ZAHYmdRB0fCzxl4n7Dv2SStXZ-FD9YuEhxCzqocXC1Ihwir6XV0PlCB95AatJazmgr6F5GFFliQ83mdwUl_wXQUZGbEiU1dZoCZt-1isasz8CfFHEvwIfXy2MA3doahhw9svhb8Ji340EtrEY_SMu7KBMUVU1btPVqQB343D7IQlPJu_dGV_mg0Qw2_OCmoVKYlUSnH&uniplatform=NZKPT&language=CHS
|
[11] |
RICKER W E. Computation and interpretation of biological statistics of fish populations[M]. Bull Fish Res Board Can, 1975: 191-382.
|
[12] |
赵宪勇, 陈毓桢, 李显森, 等. 多种类海洋渔业资源声学评估技术和方法探讨[J]. 海洋学报, 2003, 25(1): 192-202. https://d.wanfangdata.com.cn/conference/ChxDb25mZXJlbmNlTmV3UzIwMjQxMTEzMTU1MjI0Egc1NjA3ODA2GghzODNzbzdwNw%3D%3D
|
[13] |
SIMMONDS J, MACLENNAN D N. Fisheries acoustics: theory and practice[M]. Oxford: Wiley-Blackwell, 2005: 20-411. doi: 10.1111/j.1467-2979.2006.00220.x
|
[14] |
MISHIMA S. Detection of squid school by the fish detector[J]. Bull Fac Fish Hokkaido Univ, 1951, 1(1): 99-100.
|
[15] |
JEFFERTS K, BURCZYNSKI J, PEARCY W G. Acoustical assessment of squid (Loligo opalescens) off the central Oregon coast[J]. Can J Fish Aquat Sci, 1987, 44(6): 1261-1267. doi: 10.1139/f87-149
|
[16] |
STARR R, THORNE R. Acoustic assessment of squid stocks[J]. FAO Fish TechPap, 1998, 1(1): 181-198.
|
[17] |
CABREIRA A, MADIROLAS A, BRUNETTI N. Acoustic characterization of the Argentinean short-fin squid aggregations[J]. Fish Res, 2011, 108(1): 95-99. doi: 10.1016/j.fishres.2010.12.003
|
[18] |
FOOTE K G. Importance of the swimbladder in acoustic scattering by fish: a comparison of gadoid and mackerel target strengths[J]. J Acoust Soc Am, 1980, 67(3): 2084-2089.
|
[19] |
SIMRAD. Simrad ER60 Scientific echo sounder software reference manual[M]. Oslo, Norway: Simrad Maritime AS Kongsberg: 2008: 19-31.
|
[20] |
FOOTE K G. Fish target strengths for use in echo integrator surveys[J]. J Acoust Soc Am, 1987, 82(3): 981-987. doi: 10.1121/1.395298
|
[21] |
MACAULAY G J, KLOSER R J, RYAN T E. In situ target strength estimates of visually verified orange roughy[J]. ICES J Mar Sci: Journal du Conseil, 2013, 70(1): 215-222. doi: 10.1093/icesjms/fss154
|
[22] |
ONA E, BARANGE M. Single target recognition[J]. ICES Coop Res Rep, 1999, 235(1): 28-43.
|
[23] |
SAWADA K, FURUSAWA M, WILLIAMSON N. Conditions for the precise measurement of fish target strength in situ[J]. J Mar Acoust Soc Jpn, 1993, 20(2): 73-79. doi: 10.3135/jmasj.20.73
|
[24] |
MADUREIRA L S, EVERSON I, MURPHY E J. Interpretation of acoustic data at two frequencies to discriminate between Antarctic krill (Euphausia superba Dana) and other scatterers[J]. J Plankton Res, 1993, 15(7): 787-802. doi: 10.1093/plankt/15.7.787
|
[25] |
KANG M, FURUSAWA M, MIYASHITA K. Effective and accurate use of difference in mean volume backscattering strength to identify fish and plankton[J]. ICES J Mar Sci: Journal Du Conseil, 2002, 59(4): 794-804. doi: 10.1006/jmsc.2002.1229
|
[26] |
张引. 南海產南魷資源之漁業聲學研究[D]. 臺北: 臺灣大學海洋研究所, 2005.
|
[27] |
RUDSTAM L G, PARKER S L, EINHOUSE D W, et al. Application of in situ target-strength estimations in lakes: examples from rainbow-smelt surveys in Lakes Erie and Champlain[J]. ICES J Mar Sci, 2003, 60(3): 500-507. doi: 10.1016/S1054-3139(03)00046-8
|
[28] |
O'DRISCOLL R L, ROSE G A. In situ acoustic target strength of juvenile capelin[J]. ICES J Mar Sci, 2001, 58(1): 342-345. doi: 10.1006/jmsc.2000.1015
|
[29] |
SOULE M A, HAMPTON I, LIPIŃSKI M R. Estimating the target strength of live, free-swimming chokka squid Loligo reynaudii at 38 and 120 kHz[J]. ICES J Mar Sci: Journal Du Conseil, 2010, 67(7): 1381-1391. doi: 10.1093/icesjms/fsq058
|
[30] |
RECORD N R, YOUNG B D. Patterns of diel vertical migration of zooplankton in acoustic doppler velocity and backscatter data on the Newfoundland shelf[J]. Can J Fish Aquat Sci, 2006, 63(12): 2708-2721. doi: 10.1139/f06-157
|
[31] |
BURD B J, THOMSON R E, JAMIESON G S. Composition of a deep scattering layer overlying a mid-ocean ridge hydrothermal plume[J]. Mar Biol, 1992, 113(3): 517-526. doi: 10.1007/BF00349179
|
[32] |
MCQUINN I, DION M, PIERRE J. The acoustic multifrequency classification of two sympatric euphausiid species (Meganyctiphanes norvegica and Thysanoessa raschii), with empirical and SDWBA model validation[J]. ICES J Mar Sci, 2013, 70(3): 636-649. doi: 10.1093/icesjms/fst004
|