ZHANG Jun, CHEN Zuozhi, CHEN Guobao, QIU Yongsong, LIU Shigang, YAO Zhuang. Hydroacoustic detection and estimation techniques of squid Sthenoteuthis oualaniensis in the South China Sea[J]. South China Fisheries Science, 2014, 10(6): 1-11. DOI: 10.3969/j.issn.2095-0780.2014.06.001
Citation: ZHANG Jun, CHEN Zuozhi, CHEN Guobao, QIU Yongsong, LIU Shigang, YAO Zhuang. Hydroacoustic detection and estimation techniques of squid Sthenoteuthis oualaniensis in the South China Sea[J]. South China Fisheries Science, 2014, 10(6): 1-11. DOI: 10.3969/j.issn.2095-0780.2014.06.001

Hydroacoustic detection and estimation techniques of squid Sthenoteuthis oualaniensis in the South China Sea

More Information
  • Received Date: March 05, 2014
  • Revised Date: May 19, 2014
  • According to the acoustic survey data of squid (Sthenoteuthis oualaniensis) in the South China Sea in 2013 obtained by Simrad EK60 (38 kHz, 120 kHz) and Simrad EY60 (70 kHz, 120 kHz) scientific echosounders, we investigated the target strength (TS) and spatial distribution of squid, interference of zooplankton, potential of dB difference technique in the acoustic identification. The results reveal that the TS of squid could be measured by in situ method with light-falling net as biological sampling device. Squid echo was not obvious under natural light condition, but the density of squid increased significantly when the light was on. Before 22: 00, the squids mainly assembled in layers at 10~50 m and 55~80 m, while after 22: 00, the squids assembled in layers at 10~35 m, 50~75 m and 115~155 m. Zooplankton and pelagic fish caused considerable interference in the acoustic estimation especially at night, so different thresholds should be selected during different time periods. The dB difference technique which might be important in discriminating squid echogram should be studied further.

  • [1]
    ROPER C F, SWEENEY M J, NAUEN C E. FAO species catalogue. Vol. 3. Cephalopods of the world. An annotated and illustrated cataloge of species of interest to fisheries[J]. FAO Fishery Synop, 1984, 3(1): 377.
    [2]
    [3]
    陈新军, 刘必林, 王尧耕. 世界头足类[M]. 北京: 海洋出版社, 2009: 312-314.
    [4]
    刘必林, 陈新军, 钟俊生. 采用耳石研究印度洋西北海域鸢乌贼的年龄、生长和种群结构[J]. 大连水产学院学报, 2009, 24(3): 206-215. doi: 10.3969/j.issn.1000-9957.2009.03.004
    [5]
    范江涛, 冯雪, 邱永松, 等. 南海鸢乌贼生物学研究进展[J]. 广东农业科学, 2013, 40(23): 122-128. doi: 10.3969/j.issn.1004-874X.2013.23.030
    [6]
    [7]
    [8]
    [9]
    贾晓平, 李永振, 李纯厚, 等. 南海专属经济区和大陆架渔业生态环境与渔业资源[M]. 北京: 科学出版社, 2004: 385-391.
    [10]
    [11]
    RICKER W E. Computation and interpretation of biological statistics of fish populations[M]. Bull Fish Res Board Can, 1975: 191-382.
    [12]
    赵宪勇, 陈毓桢, 李显森, 等. 多种类海洋渔业资源声学评估技术和方法探讨[J]. 海洋学报, 2003, 25(1): 192-202. https://d.wanfangdata.com.cn/conference/ChxDb25mZXJlbmNlTmV3UzIwMjQxMTEzMTU1MjI0Egc1NjA3ODA2GghzODNzbzdwNw%3D%3D
    [13]
    SIMMONDS J, MACLENNAN D N. Fisheries acoustics: theory and practice[M]. Oxford: Wiley-Blackwell, 2005: 20-411. doi: 10.1111/j.1467-2979.2006.00220.x
    [14]
    MISHIMA S. Detection of squid school by the fish detector[J]. Bull Fac Fish Hokkaido Univ, 1951, 1(1): 99-100.
    [15]
    JEFFERTS K, BURCZYNSKI J, PEARCY W G. Acoustical assessment of squid (Loligo opalescens) off the central Oregon coast[J]. Can J Fish Aquat Sci, 1987, 44(6): 1261-1267. doi: 10.1139/f87-149
    [16]
    STARR R, THORNE R. Acoustic assessment of squid stocks[J]. FAO Fish TechPap, 1998, 1(1): 181-198.
    [17]
    CABREIRA A, MADIROLAS A, BRUNETTI N. Acoustic characterization of the Argentinean short-fin squid aggregations[J]. Fish Res, 2011, 108(1): 95-99. doi: 10.1016/j.fishres.2010.12.003
    [18]
    FOOTE K G. Importance of the swimbladder in acoustic scattering by fish: a comparison of gadoid and mackerel target strengths[J]. J Acoust Soc Am, 1980, 67(3): 2084-2089.
    [19]
    SIMRAD. Simrad ER60 Scientific echo sounder software reference manual[M]. Oslo, Norway: Simrad Maritime AS Kongsberg: 2008: 19-31.
    [20]
    FOOTE K G. Fish target strengths for use in echo integrator surveys[J]. J Acoust Soc Am, 1987, 82(3): 981-987. doi: 10.1121/1.395298
    [21]
    MACAULAY G J, KLOSER R J, RYAN T E. In situ target strength estimates of visually verified orange roughy[J]. ICES J Mar Sci: Journal du Conseil, 2013, 70(1): 215-222. doi: 10.1093/icesjms/fss154
    [22]
    ONA E, BARANGE M. Single target recognition[J]. ICES Coop Res Rep, 1999, 235(1): 28-43.
    [23]
    SAWADA K, FURUSAWA M, WILLIAMSON N. Conditions for the precise measurement of fish target strength in situ[J]. J Mar Acoust Soc Jpn, 1993, 20(2): 73-79. doi: 10.3135/jmasj.20.73
    [24]
    MADUREIRA L S, EVERSON I, MURPHY E J. Interpretation of acoustic data at two frequencies to discriminate between Antarctic krill (Euphausia superba Dana) and other scatterers[J]. J Plankton Res, 1993, 15(7): 787-802. doi: 10.1093/plankt/15.7.787
    [25]
    KANG M, FURUSAWA M, MIYASHITA K. Effective and accurate use of difference in mean volume backscattering strength to identify fish and plankton[J]. ICES J Mar Sci: Journal Du Conseil, 2002, 59(4): 794-804. doi: 10.1006/jmsc.2002.1229
    [26]
    张引. 南海產南魷資源之漁業聲學研究[D]. 臺北: 臺灣大學海洋研究所, 2005.
    [27]
    RUDSTAM L G, PARKER S L, EINHOUSE D W, et al. Application of in situ target-strength estimations in lakes: examples from rainbow-smelt surveys in Lakes Erie and Champlain[J]. ICES J Mar Sci, 2003, 60(3): 500-507. doi: 10.1016/S1054-3139(03)00046-8
    [28]
    O'DRISCOLL R L, ROSE G A. In situ acoustic target strength of juvenile capelin[J]. ICES J Mar Sci, 2001, 58(1): 342-345. doi: 10.1006/jmsc.2000.1015
    [29]
    SOULE M A, HAMPTON I, LIPIŃSKI M R. Estimating the target strength of live, free-swimming chokka squid Loligo reynaudii at 38 and 120 kHz[J]. ICES J Mar Sci: Journal Du Conseil, 2010, 67(7): 1381-1391. doi: 10.1093/icesjms/fsq058
    [30]
    RECORD N R, YOUNG B D. Patterns of diel vertical migration of zooplankton in acoustic doppler velocity and backscatter data on the Newfoundland shelf[J]. Can J Fish Aquat Sci, 2006, 63(12): 2708-2721. doi: 10.1139/f06-157
    [31]
    BURD B J, THOMSON R E, JAMIESON G S. Composition of a deep scattering layer overlying a mid-ocean ridge hydrothermal plume[J]. Mar Biol, 1992, 113(3): 517-526. doi: 10.1007/BF00349179
    [32]
    MCQUINN I, DION M, PIERRE J. The acoustic multifrequency classification of two sympatric euphausiid species (Meganyctiphanes norvegica and Thysanoessa raschii), with empirical and SDWBA model validation[J]. ICES J Mar Sci, 2013, 70(3): 636-649. doi: 10.1093/icesjms/fst004
  • Related Articles

    [1]ZHANG Yuqing, GUO Huayang, ZHANG Nan, LIU Baosuo, ZHU Kecheng, XIAN Lin, ZHU Tengfei, ZHANG Dianchang. Path analysis of partial growth-related traits for wild large yellow croaker (Larimichthys crocea) of different geographical populations[J]. South China Fisheries Science, 2024, 20(3): 112-119. DOI: 10.12131/20230203
    [2]FANG Wei, ZHOU Shengjie, ZHAO Wang, YANG Rui, HU Jing, YU Gang, MA Zhenhua. Correlation and path analysis of morphological traits to body mass of juvenile Thunnus albacores[J]. South China Fisheries Science, 2021, 17(1): 52-58. DOI: 10.12131/20200158
    [3]CHEN Jian, GUO Dan, ZHAI Ziqing, YU Dahui, BAI Lirong. Correlation analysis of morphological traits and body mass traits of Coelomactra antiquata[J]. South China Fisheries Science, 2021, 17(1): 45-51. DOI: 10.12131/20200180
    [4]WEI Haijun, DENG Zhenghua, CHEN Mingqiang, WANG Jijin, LI Youning, WANG Yu. Correlation and path analysis of quantitative traits of clam (Callista erycina)[J]. South China Fisheries Science, 2019, 15(6): 34-40. DOI: 10.12131/20190126
    [5]LIANG Jian, YAN Xiwu, HUO Zhongming, LIU Zhen, WU Yunxia, YANG Feng. Study on shell length and survival of orange strain of Manila clam (Ruditapes philippinarum) with different inbreeding coefficient[J]. South China Fisheries Science, 2013, 9(4): 87-93. DOI: 10.3969/j.issn.2095-0780.2013.04.015
    [6]GUO Huayang, CHEN Mingqiang, WANG Yu, JIANG Shigui, ZHANG Dianchang, YANG Qibin, LI Youning, ZHU Lichun, WU Kaichang. Correlation and path analysis of main economic traits of wild population of Trachycardium flavum[J]. South China Fisheries Science, 2013, 9(2): 1-8. DOI: 10.3969/j.issn.2095-0780.2013.02.001
    [7]YAN Zhao, GU Zhifeng, ZHANG Huazhong, WAN Yan, SHI Yaohua, ZHAN Xin, WANG Aimin. Correlation and path analysis of major quantitative traits of Chlamys nobilis in Sanya[J]. South China Fisheries Science, 2012, 8(3): 34-38. DOI: 10.3969/j.issn.2095-0780.2012.03.005
    [8]LIU Wei, SU Shengyan, DONG Zaijie, ZHANG Jianqiao, MA Liangxiao, LI Lingling, QV Jiangqi, YUAN Xinhua. Correlation analysis of microsatellite DNA markers with growth trait among 3 breeding populations of common carp[J]. South China Fisheries Science, 2012, 8(3): 17-24. DOI: 10.3969/j.issn.2095-0780.2012.03.003
    [9]XIAO Shu, FU Zhengjun, YU Ziniu. Path analysis of quantitative traits of male and female Hong Kong oyster Crassostrea hongkongensis[J]. South China Fisheries Science, 2011, 7(4): 1-9. DOI: 10.3969/j.issn.2095-0780.2011.04.001
    [10]WANG Yingbin, LIU Qun. An elementary study of impacts of error structure on the estimation of fish natural mortality coefficient using cohort analysis (CA) model[J]. South China Fisheries Science, 2006, 2(3): 7-15.
  • Cited by

    Periodical cited type(5)

    1. 晏磊,李杰,张鹏,杨炳忠,王腾. 基于GAM模型的南海鸢乌贼CPUE时空分布及其与环境因子的关系. 海洋通报. 2021(02): 217-223 .
    2. 李杰,张鹏,王腾,晏磊,杨炳忠,陈作志. 基于广义加性模型研究影响罩网沉降性能的因子. 南方水产科学. 2021(04): 74-81 . 本站查看
    3. 晏磊,李杰,杨炳忠,张鹏. 光诱罩网沉降性能对鸢乌贼渔获率的影响. 南方水产科学. 2018(04): 10-16 . 本站查看
    4. 李杰,晏磊,杨炳忠,张鹏. 4种集鱼灯在灯光罩网作业中的渔获效果分析. 上海海洋大学学报. 2018(05): 773-780 .
    5. 李杰,晏磊,杨炳忠,张鹏. 罩网自由沉降过程的数值模拟研究. 南方水产科学. 2017(04): 105-114 . 本站查看

    Other cited types(0)

Catalog

    Article views (3573) PDF downloads (2120) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return