LUO Yimin, ZHANG Kai, XIE Jun, WANG Guangjun, GONG Wangbao, LI Zhifei, XIA Yun, TIAN Jingjing, LI Hongyan, XIE Wenping, YU Ermeng. Effects of complex carbon sources on vertical distribution and exchange flux of dissolved nutrients at sediment-water interface[J]. South China Fisheries Science, 2025, 21(2): 90-101. DOI: 10.12131/20240214
Citation: LUO Yimin, ZHANG Kai, XIE Jun, WANG Guangjun, GONG Wangbao, LI Zhifei, XIA Yun, TIAN Jingjing, LI Hongyan, XIE Wenping, YU Ermeng. Effects of complex carbon sources on vertical distribution and exchange flux of dissolved nutrients at sediment-water interface[J]. South China Fisheries Science, 2025, 21(2): 90-101. DOI: 10.12131/20240214

Effects of complex carbon sources on vertical distribution and exchange flux of dissolved nutrients at sediment-water interface

More Information
  • Received Date: September 08, 2024
  • Revised Date: October 31, 2024
  • Accepted Date: January 17, 2025
  • Available Online: February 09, 2025
  • To investigate the purification mechanism of composite carbon source, taking largemouth bass (Micropterus salmoides) breeding system as the experimental object, we added the treatment group with composite carbon source of corn husk and composite carbon source of rice straw, but did not add the control group with composite carbon source, and then collected the in situ water samples from the vertical profiles of each group of the sediment-water interface by using with the Peeper (Pore water equilibriums) technique, so as to analyze the vertical distribution of nutrient salts in each group, estimate the exchange fluxes at the sediment-water interface, and investigate the effects of the composite carbon sources on the nitrogen transport and transformation at the sediment-water interface. The results show that: 1) Each group of nutrient salts at the sediment-water interface had a strong vertical distribution pattern, except for ammonium nitrogen (NH4 +-N) and total nitrogen (TN), while the other nutrient salts showed a decreasing trend with depth. 2) NO3 -N was the main endogenously released nutrient salts in the sediments of the largemouth bass aquaculture system. Compared with the control group, the two groups of carbon sources both promoted the release of NH4 +-N in the sediments. The corn husk carbon source slowed down the release of nitrate nitrogen (NO3 -N), nitrite nitrogen (NO2 -N) and phosphate (PO4 3−-P), and the effect of the rice straw carbon source was insignificant. 3) The addition of the composite carbon source promoted the nutrient salts removal from the water body. Compared with the rice straw carbon source, the corn husk carbon source had higher TN, PO4 3−-P and chemical oxygen demand (COD) removal rates of 73%, 53% and 48%, respectively. In conclusion, adding composite carbon sources affects the vertical distribution characteristics of nutrient salts and diffusion fluxes at the sediment-water interface; the corn husk carbon source slowed down the release of nutrient salts from the sediment and had a better effect on water purification.

  • [1]
    VIDAL-GAVILAN G, CARREY R, SOLANAS A, et al. Feeding strategies for groundwater enhanced biodenitrification in an alluvial aquifer: chemical, microbial and isotope assessment of a 1D flow-through experiment[J]. Sci Total Environ, 2014, 494: 241-251.
    [2]
    CRITCHLEY K, RUDOLPH D L, DEVLIN J F, et al. Stimulating in situ denitrification in an aerobic, highly permeable municipal drinking water aquifer[J]. J Contam Hydrol, 2014, 171: 66-80. doi: 10.1016/j.jconhyd.2014.10.008
    [3]
    GUO K, SHI M M, HUANG X L, et al. The effect of artificial substrate and carbon source addition on bacterial diversity and community composition in water in a pond polyculture system[J]. Fishes, 2024, 9(3): 80. doi: 10.3390/fishes9030080
    [4]
    LU Z Y, XIE J, ZHU D T, et al. The combination of nanobubble aeration and iron-based multi-carbon source composites achieves efficient aquaculture wastewater nitrogen removal[J]. Chem Eng J, 2024, 491: 152093. doi: 10.1016/j.cej.2024.152093
    [5]
    LI C Y, WANG H Y, YAN G K, et al. Initial carbon release characteristics, mechanisms and denitrification performance of a novel slow release carbon source[J]. J Environ Sci, 2022, 118: 32-45. doi: 10.1016/j.jes.2021.08.045
    [6]
    ANDERSON H, JOHENGEN T, MILLER R, et al. Research progress in solid carbon source-based denitrification technologies for different target water bodies[J]. Sci Total Environ, 2021, 782: 146669. doi: 10.1016/j.scitotenv.2021.146669
    [7]
    钟大森. 两种配养动物的扰动作用对沉积物-水界面营养盐迁移转化的影响[D]. 青岛: 中国海洋大学, 2015: 1-3.
    [8]
    范成新. 湖泊沉积物-水界面研究进展与展望[J]. 湖泊科学, 2019, 31(5): 1191-1218. doi: 10.18307/2019.0514
    [9]
    冀峰. 太湖西岸湖滨带沉积物主要生源要素的分布特征[D]. 南京: 南京师范大学, 2016: 7-12.
    [10]
    杜彦秋, 吴文广, 张子军, 等. 凡纳滨对虾盐碱水养殖池塘沉积物-水界面氮元素交换通量的研究[J]. 水生生物学报, 2024, 48(7): 1183-1192. doi: 10.7541/2024.2023.0381
    [11]
    LI S L, SANG C Y, WANG A, et al. Effects of dietary carbohydrate sources on growth performance, glycogen accumulation, insulin signaling pathway and hepatic glucose metabolism in largemouth bass, Micropterus salmoides[J]. Aquaculture, 2019, 513: 734391. doi: 10.1016/j.aquaculture.2019.734391
    [12]
    李胜杰, 姜鹏, 白俊杰, 等. 大口黑鲈生长相关标记的聚合及其效果分析[J]. 水生生物学报, 2019, 43(5): 962-968. doi: 10.7541/2019.114
    [13]
    GODAHEWA G, LEE S, KIM J, et al. Analysis of complete genome and pathogenicity studies of the spring viremia of carp virus isolated from common carp (Cyprinus carpio carpio) and largemouth bass (Micropterus salmoides): an indication of SVC disease threat in Korea[J]. Virus Res, 2018, 255: 105-116. doi: 10.1016/j.virusres.2018.06.015
    [14]
    SUBHADRA B, LOCHMANN R, RAWLE S, et al. Effect of dietary lipid source on the growth, tissue composition and hematological parameters of largemouth bass (Micropterus salmoides)[J]. Aquaculture, 2006, 255(1/2/3/4): 210-222.
    [15]
    SUN J, ZHAO L, LIAO L, et al. Interactive effect of thermal and hypoxia on largemouth bass (Micropterus salmoides) gill and liver: aggravation of oxidative stress, inhibition of immunity and promotion of cell apoptosis[J]. Fish Shellfish Immunol, 2020, 98: 923-936. doi: 10.1016/j.fsi.2019.11.056
    [16]
    LU Z Y, TIAN W J, CHU M L, et al. A novel and thorough research into desorption behavior of PAHs from sediments to seawater: aging process, thermodynamics, kinetics, influencing factors[J]. Chem Eng J, 2024, 480: 148322. doi: 10.1016/j.cej.2023.148322
    [17]
    张楠楠, 胡斌, 程伟. 洪泽湖沉积物间隙水有色可溶性有机质组成及分布特征[J]. 环境科技, 2023, 36(6): 1-7. doi: 10.3969/j.issn.1674-4829.2023.06.002
    [18]
    LIU L, HE N N, BORHAM A, et al. The effect of iron-modified biochar on phosphorus adsorption and the prospect of synergistic adsorption between biochar and iron-oxidizing bacteria: a review[J]. Water, 2023, 15(18): 3315. doi: 10.3390/w15183315
    [19]
    朱宜平, 高佩玥, 赵一赢, 等. 华东某水库表层沉积物氨氮释放贡献量分析[J]. 上海大学学报 (自然科学版), 2022, 28(1): 49-56.
    [20]
    关昊鹏, 谢筱婷, 陈思睿, 等. 富硫型水库沉积物AVS和SEM空间分布特征及重金属风险评价[J]. 湖泊科学, 2024, 36(2): 452-467. doi: 10.18307/2024.0223
    [21]
    董贯仓, 付朝松, 冷春梅, 等. 三种池塘水-沉积物营养物质分布特征分析[J]. 山东师范大学学报 (自然科学版), 2023, 38(3): 253-258.
    [22]
    时丹. 沉积物间隙水磷的高分辨被动采样技术研究[D]. 南京: 南京农业大学, 2009: 15-16.
    [23]
    HESSLEIN R. An in situ sampler for close interval pore water studies 1[J]. Limnol Oceanogr, 1976, 21(6): 912-914. doi: 10.4319/lo.1976.21.6.0912
    [24]
    周可遥. 新型复合碳源的制备及其强化农村生活污水反硝化效果的研究[D]. 上海: 华东师范大学, 2022: 50-53.
    [25]
    LASKOV C, HERZOG C, LEWANDOWSKI J, et al. Miniaturized photometrical methods for the rapid analysis of phosphate, ammonium, ferrous iron, and sulfate in pore water of freshwater sediments[J]. Limnol Oceanogr, 2007, 5(1): 63-71. doi: 10.4319/lom.2007.5.63
    [26]
    TU X H, XIAO B D, XIONG J, et al. A simple miniaturised photometrical method for rapid determination of nitrate and nitrite in freshwater[J]. Talanta, 2010, 82(3): 976-983. doi: 10.1016/j.talanta.2010.06.002
    [27]
    魏南, 余德光, 谢骏, 等. 吉富罗非鱼温棚池塘上覆水-沉积物间隙水营养盐垂直分布特征及其界面交换通量[J]. 中国水产科学, 2015, 22(4): 716-728.
    [28]
    ULLMAN W, ALLER R. Diffusion coefficients in nearshore marine sediments 1[J]. Limnol Oceanogr, 1982, 27(3): 552-556. doi: 10.4319/lo.1982.27.3.0552
    [29]
    LI Y H, GREGORY S. Diffusion of ions in sea water and in deep-sea sediments[J]. Geochim Cosmochim Acta, 1974, 38(5): 703-714. doi: 10.1016/0016-7037(74)90145-8
    [30]
    WU R, LIU Y, ZHANG S, et al. Characterization of nitrogen and phosphorus at the ice-water-sediment interface and the effect of their migration on overlying water quality in Daihai Lake (China) during the freezing period[J]. Sci Total Environ, 2023, 893: 164863. doi: 10.1016/j.scitotenv.2023.164863
    [31]
    赵海超, 王圣瑞, 焦立新, 等. 洱海沉积物中不同形态磷的时空分布特征[J]. 环境科学研究, 2013, 26(3): 227-234.
    [32]
    古小治, 张雷, 柏祥, 等. 南四湖湿地沉积物及孔隙水基本特性研究[J]. 环境科学, 2010, 31(4): 939-945.
    [33]
    王志齐, 李宝, 梁仁君, 等. 南四湖内源氮磷释放的对比研究[J]. 环境科学学报, 2013, 33(2): 487-493.
    [34]
    XIA X H, LIU T, YANG Z F, et al. Enhanced nitrogen loss from rivers through coupled nitrification-denitrification caused by suspended sediment[J]. Sci Total Environ, 2017, 579: 47-59. doi: 10.1016/j.scitotenv.2016.10.181
    [35]
    TAMMEORG O, NÜRNBERG G K, TÕNNO I, et al. Spatio-temporal variations in sediment phosphorus dynamics in a large shallow lake: mechanisms and impacts of redox-related internal phosphorus loading[J]. Sci Total Environ, 2024, 907: 168044. doi: 10.1016/j.scitotenv.2023.168044
    [36]
    LYU Y B, ZHANG M, YIN H B. Phosphorus release from the sediment of a drinking water reservoir under the influence of seasonal hypoxia[J]. Sci Total Environ, 2024, 917: 170490. doi: 10.1016/j.scitotenv.2024.170490
    [37]
    KATSEV S, DITTRICH M. Modeling of decadal scale phosphorus retention in lake sediment under varying redox conditions[J]. Ecol Model, 2013, 251: 246-259. doi: 10.1016/j.ecolmodel.2012.12.008
    [38]
    BROZINCEVIC A, GRGAS D, STEFANAC T, et al. Cost reduction in the process of biological denitrification by choosing traditional or alternative carbon sources[J]. Energies, 2024, 17(15): 3660. doi: 10.3390/en17153660
    [39]
    YIN W J, WANG K, XU J T, et al. The performance and associated mechanisms of carbon transformation (PHAs, polyhydroxyalkanoates) and nitrogen removal for landfill leachate treatment in a sequencing batch biofilm reactor (SBBR)[J]. RSC advances, 2018, 8(74): 42329-42336. doi: 10.1039/C8RA07839D
    [40]
    YANG Z, SUN M, PENG L, et al. Reduction of nutrient fluxes across the sediment-water interface and nutrient accumulation in lotus-fish co-culture aquaculture ponds[J]. Aquac Int, 2024, 32: 7683-7694. doi: 10.1007/s10499-024-01536-x
    [41]
    YAN Y F, ZHOU J B, DU C H, et al. Relationship between nitrogen dynamics and key microbial nitrogen-cycling genes in an intensive freshwater aquaculture pond[J]. Microorganisms, 2024, 12(2): 266. doi: 10.3390/microorganisms12020266
    [42]
    SUN Y, CUI Y, YANG Q F. Diffusion flux of nutrient salts between sediment and waters in shrimp pond and its seasonal change[J]. Fish Res, 1997, 18(1): 60-66.
    [43]
    SUN Y M, SONG J M. Functions of China marginal sea sediments in the cycles of biogenic elements[J]. Mar Environ Sci, 2002, 21(1): 26-33.
    [44]
    WEI L C, ZHANG Y J, HAN Y T, et al. Effective abatement of ammonium and nitrate release from sediments by biochar coverage[J]. Sci Total Environ, 2023, 899: 165710. doi: 10.1016/j.scitotenv.2023.165710
    [45]
    ZILIUS M. Oxygen and nutrient exchange at the sediment-water interface in the eutrophic boreal lagoon (Baltic Sea)[D]. Klaipeda: Klaipeda University, 2011: 73-74.
    [46]
    DAEL T V, VERMEIREN C, SMOLDERS E. Internal loading of phosphorus in streams described by a Sediment-Water Exchange Model for Phosphorus (SWEMP): from lab to field scale[J]. Sci Total Environ, 2024, 912: 168912. doi: 10.1016/j.scitotenv.2023.168912
    [47]
    HU M J, YAN R B, NI R R, et al. Coastal degradation regulates the availability and diffusion kinetics of phosphorus at the sediment-water interface: mechanisms and environmental implications[J]. Water Res, 2024, 250: 121086. doi: 10.1016/j.watres.2023.121086
    [48]
    LUO W G, XU S Y, LU J, et al. Seasonal sediment phosphate release flux of shallow lakes impacted by dual environmental factors[J]. J Soils Sediments, 2024, 24(3): 1377-1390. doi: 10.1007/s11368-024-03729-6
    [49]
    ANDERSON H, JOHENGEN T, MILLER R, et al. Accelerated sediment phosphorus release in Lake Erie's central basin during seasonal anoxia[J]. Limnol Oceanogr, 2021, 66(9): 3582-3595. doi: 10.1002/lno.11900
    [50]
    ZHAO S N, SHI X H, SUN B, et al. Effects of pH on phosphorus form transformation in lake sediments[J]. Water Supply, 2021, 22(2): 1231-1243.
    [51]
    KIM L, CHOI E, STENSTROM M. Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments[J]. Chemosphere, 2003, 50(1): 53-61. doi: 10.1016/S0045-6535(02)00310-7
    [52]
    ALAM M, BARTHOD B, LI J, et al. Geochemical controls on internal phosphorus loading in Lake of the Woods[J]. Chem Geol, 2020, 558: 119873. doi: 10.1016/j.chemgeo.2020.119873
    [53]
    GUO F, YAN G K, WANG H Y, et al. Denitrification enhanced by composite carbon sources in AAO-biofilter: efficiency and metagenomics research[J]. J Environ Sci, 2025, 150: 25-35. doi: 10.1016/j.jes.2024.03.013
  • Related Articles

    [1]MA Qiwei, GUO Liang, LIU Bo, LIU Baosuo, ZHU Kecheng, GUO Huayang, ZHANG Nan, YANG Jingwen, ZHANG Dianchang. Effect of taurine on intestinal microbes and immune function in golden pompano (Trachinotus ovatus)[J]. South China Fisheries Science, 2021, 17(2): 87-96. DOI: 10.12131/20200193
    [2]ZHANG Yaqiu, DENG Yiqin, FENG Juan, MAO Can, HU Jianmei, SU Youlu. Construction of knock-out mutant of vhh in Vibrio harveyi and its related biological characteristics analysis[J]. South China Fisheries Science, 2020, 16(2): 43-53. DOI: 10.12131/20190211
    [3]SONG Ling, ZHU Kecheng, GUO Huayang, JIANG Shigui, ZHANG Dianchang. Characterization and function analysis of Elovl4-like elongase gene in golden pompano (Trachinotus ovatus)[J]. South China Fisheries Science, 2019, 15(3): 76-86. DOI: 10.12131/20180272
    [4]FAN Sigang, ZHAO Chao, WANG Pengfei, YAN Lulu, QIU Lihua. Functional analysis of MSTN promoter in scallop (Chalmys nobilis)[J]. South China Fisheries Science, 2019, 15(1): 63-68. DOI: 10.12131/20180182
    [5]LI Yafang, DU Feiyan, WANG Lianggen, GU Yangguang, NING Jiajia. A biological trait approach to assess ecological functions of macrobenthos at different stand age of rehabilitated Sonneratia apetala mangrove[J]. South China Fisheries Science, 2018, 14(3): 10-19. DOI: 10.3969/j.issn.2095-0780.2018.03.002
    [6]RONG Jing, QIU Chaoying, HU Xiao, YANG Xianqing, LI Laihao. Functional properties of glycosylated myofibrillar proteins from purple back flying squids (Symplectoteuthis oualaniensis)[J]. South China Fisheries Science, 2018, 14(1): 68-76. DOI: 10.3969/j.issn.2095-0780.2018.01.009
    [7]LIU Qian, JIANG Shigui, QIU Lihua, HUANG Jianhua, ZHOU Falin, YANG Qibin, JIANG Song, YANG Lishi. Immune function and expression of Toll9 receptor gene from Penaeus monodon[J]. South China Fisheries Science, 2017, 13(5): 63-71. DOI: 10.3969/j.issn.2095-0780.2017.05.009
    [8]MOU Weihao, ZHOU Yan, GENG Yi, WANG Kaiyu, YU Zehui, LI Yajun, HUANG Xiaoli, OU Yangping, CHEN Defang. Effect on main functional genes expression and replication of Chinese giant salamander ranavirus (CGSRV) by RNA interference[J]. South China Fisheries Science, 2017, 13(4): 80-86. DOI: 10.3969/j.issn.2095-0780.2017.04.010
    [9]MO Baolin, QIN Chuanxin, CHEN Pimao, DIAO Yingjiao, YUAN Huarong, LI Xiaoguo, TONG Fei, FENG Xue. Preliminary analysis of structure and function of Daya Bay ecosystem based on Ecopath model[J]. South China Fisheries Science, 2017, 13(3): 9-19. DOI: 10.3969/j.issn.2095-0780.2017.03.002
    [10]ZHANG Chenjie, ZHANG Yanliang, GAO Quanxin, PENG Shiming, SHI Zhaohong. Effect of low salinity stress on antioxidant function in liver of juvenile Nibea albiflora[J]. South China Fisheries Science, 2015, 11(4): 59-64. DOI: 10.3969/j.issn.2095-0780.2015.04.009
  • Cited by

    Periodical cited type(1)

    1. 孟璐,车金远,黄旭雄,罗土炎,鲍宝龙. 溶藻弧菌RseB基因缺失对凡纳滨对虾致病性的影响. 上海海洋大学学报. 2023(04): 681-689 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return