TIAN Han, JIANG Yan'e, ZHANG Jun, CHEN Zuozhi, XU Shannan, ZHU Jiangfeng, YU Wenming. A preliminary study on community structure of mesopelagic fish in cold seep of Xisha Islands[J]. South China Fisheries Science, 2022, 18(5): 9-17. DOI: 10.12131/20210370
Citation: TIAN Han, JIANG Yan'e, ZHANG Jun, CHEN Zuozhi, XU Shannan, ZHU Jiangfeng, YU Wenming. A preliminary study on community structure of mesopelagic fish in cold seep of Xisha Islands[J]. South China Fisheries Science, 2022, 18(5): 9-17. DOI: 10.12131/20210370

A preliminary study on community structure of mesopelagic fish in cold seep of Xisha Islands

More Information
  • Received Date: December 09, 2021
  • Revised Date: February 13, 2022
  • Accepted Date: March 13, 2022
  • Available Online: March 29, 2022
  • To recognize the fish composition of cold seep ecosystems, and provide a scientific basis for biodiversity conservation and monitoring in the relevant regions, we investigated the mesopelagic fish resources inside and outside the cold seep in the Xisha Islands by a mesopelagic trawler. A total of 106 species of mesopelagic fish had been identified which belong to 62 Genera, 31 Families and 12 Orders, with the dominant groups of Myctophiformes and Stomiiformes. Among them, 84 species of fish belonging to 54 Genera, 30 Families, 11 Orders were collected inside the cold seep; while 60 species of fish belonging to 32 Genera, 13 Families and 6 Orders were collected outside the cold seep. There were 38 shared species of mesopelagic fish belonging to 22 Genera, 9 Families, 5 Orders inside and outside the cold seep, and the main shared species were Chauliodus sloani, Ceratoscopelus warmingii and Diaphus garmani. The Jaccard species similarity index shows that the species similarity of mesopelagic fish was moderately different inside and outside the cold seep (I=35.8%). The average taxonomic distinctness (Δ+) of mesopelagic fish was significantly higher inside the cold seep than outside (P<0.01), but the variation in the taxonomic distinctness (Λ+) of mesopelagic fish community was inverse (P<0.01). From the perspective of pelagic distribution, there were significant differences in the species composition of the mesopelagic fish communities inside and outside the cold seep (P<0.01). In the surface waters, the mesopelagic fish diversity inside the cold seep was lower than outside, while it's inverse in the deeper water layers. There was a correlation between the fish communities at different stations inside and outside the cold seep in terms of water stratigraphy and timing, with higher similarity between the deeper layers inside the cold seep; and higher similarity between the nocturnal surface layers inside the cold seep area and the nocturnal surface layers outside the cold seep. The results show that there are differences in the mesopelagic fish communities inside and outside the cold seep, with more species of mesopelagic fish inside the cold seep and a higher diversity of species in the deeper water layers. Eight key species that distinguish the mesopelagic fish communities in the waters inside and outside the cold seep include Bolinichthys longipes and Vinciguerria nimbara, having a cumulative contribution of 56.06%.
  • [1]
    SUESS E. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions[J]. Int J Earth Sci, 2014, 103(7): 1889-1916. doi: 10.1007/s00531-014-1010-0
    [2]
    WANG J L, WU S G, KONG X, et al. Subsurface fluid flow at an active cold seep area in the Qiongdongnan Basin, northern South China Sea[J]. J Asian Earth Sci, 2018, 168: 17-26. doi: 10.1016/j.jseaes.2018.06.001
    [3]
    MIRONOV A N. New taxa of stalked crinoids from the suborder Bourgueticrinina (Echinodermata, Crinoidea)[J]. Zool Stud, 2000, 79(6): 712-728.
    [4]
    KOVA T Y, MEKHANIKOVA I V, SIDELEVA V G, et al. Trophic relationships between macroinvertebrates and fish in St. Petersburg methane seep community in abyssal zone of Lake Baikal[J]. Contemp Probl Ecol, 2017, 10(2): 147-156. doi: 10.1134/S1995425517020123
    [5]
    CRUAUD P, DECKER C, OLU K, et al. Ecophysiological differences between vesicomyid species and metabolic capabilities of their symbionts influence distribution patterns of the deep-sea clams[J]. Mar Ecol, 2019, 40(3): e12541.
    [6]
    MACDONALD I R, LEIFER I, SASSEN R, et al. Transfer of hydrocarbons from natural seeps to the water column and atmosphere[J]. Geofluids, 2002, 2(2): 95-107. doi: 10.1046/j.1468-8123.2002.00023.x
    [7]
    蒲燕萍, 孙春岩, 陈世成, 等. 南海琼东南盆地-西沙海槽天然气水合物地球化学勘探与资源远景评价[J]. 地质通报, 2009, 28(11): 1656-1661. doi: 10.3969/j.issn.1671-2552.2009.11.015
    [8]
    万志峰, 张伟, 陈崇敏, 等. 琼东南盆地冷泉差异发育特征及其深部控制机理[J]. 海洋地质前沿, 2021, 37(7): 1-10.
    [9]
    OLIVAR M P, BERNAL A, MOLI B, et al. Vertical distribution, diversity and assemblages of mesopelagic fishes in the western Mediterranean[J]. Deep-Sea Res I, 2013, 62: 53-69.
    [10]
    CLAVEL-HENRY M, PIRODDI C, QUATTROCCHI F, et al. Spatial distribution and abundance of mesopelagic fish biomass in the Mediterranean Sea[J]. Front Mar Sci, 2020, 7: 573986. doi: 10.3389/fmars.2020.573986
    [11]
    SOBRADILLO B, BOYRA G, MARTINEZ U, et al. Target strength and swimbladder morphology of Mueller's pearlside (Maurolicus muelleri)[J]. Sci Rep, 2019, 9(1): 17311. doi: 10.1038/s41598-019-53819-6
    [12]
    BADCOCK J. The vertical distribution of mesopelagic fishes collected on the sond cruise[J]. J Mar Biolog Assoc UK, 1970, 50(4): 1001-1044. doi: 10.1017/S0025315400005920
    [13]
    EDUARDO L N, LUCENA-FREDOU F, MINCARONE M M, et al. Trophic ecology, habitat, and migratory behaviour of the viperfish Chauliodus sloani reveal a key mesopelagic player[J]. Sci Rep, 2020, 10(1): 20996. doi: 10.1038/s41598-020-77222-8
    [14]
    BOYD P W, CLAUSTRE H, LEVY M, et al. Multi-faceted particle pumps drive carbon sequestration in the ocean[J]. Nature, 2019, 568(7752): 327-335. doi: 10.1038/s41586-019-1098-2
    [15]
    CAVAN E L, LAURENCEAU-CORNRC E C, BRESSAC M, et al. Exploring the ecology of the mesopelagic biological pump[J]. Prog Oceanogr, 2019, 176: 102125. doi: 10.1016/j.pocean.2019.102125
    [16]
    BACKUS R H, CRADDOCK J E, HAEDRICH R L, et al. The distribution of mesopelagic fishes in the Equatorial and Western North Atlantic Ocean[J]. J Mar Res, 1970, 28: 179-201.
    [17]
    DOYA C, CHATZIEVANGELOU D, BAHAMON N, et al. Seasonal monitoring of deep-sea megabenthos in Barkley Canyon cold seep by internet operated vehicle (IOV)[J]. PLOS ONE, 2017, 12(5): e0176917. doi: 10.1371/journal.pone.0176917
    [18]
    ROSS S W, QUATTRINI A M, ROA-VARON A Y, et al. Species composition and distributions of mesopelagic fishes over the slope of the north-central Gulf of Mexico[J]. Deep-Sea Res II, 2010, 57(21/22/23): 1926-1956.
    [19]
    徐姗楠, 郭建忠, 范江涛, 等. 夏季大亚湾鱼类群落结构与多样性[J]. 生态学杂志, 2020, 39(4): 1254-1264.
    [20]
    SIMPSON E H. Measurement of diversity[J]. Nature, 1949, 163(4148): 688. doi: 10.1038/163688a0
    [21]
    CLARKE K R, WARWICK R. A further biodiversity index applicable to species lists: variation in taxonomic distinctness[J]. Mar Ecol Prog Ser, 2001, 216: 265-278. doi: 10.3354/meps216265
    [22]
    PIANKA E R. Ecology of the agamid lizard Amphibolurus isolepis in Western Australia[J]. Copeia, 1971, 3(3): 527-536.
    [23]
    KREBS C J. Ecological methodology[M]. New York: Harper Collins Publishers, 1989: 1-624.
    [24]
    PIELOU E C. The use of information theory in the study of ecological succession[J]. J Theor Biol, 1966, 10: 370-383. doi: 10.1016/0022-5193(66)90133-0
    [25]
    MARGALEF R. Information theory in ecology[J]. Gen Syst, 1958, 3: 36-71.
    [26]
    朱晓芬, 陈彬, 俞炜炜, 等. 厦门湾大型底栖动物分类学多样性指数及分类充分性[J]. 生态学报, 2018, 38(15): 5554-5565.
    [27]
    舒璐, 林佳艳, 徐源, 等. 基于环境DNA宏条形码的洱海鱼类多样性研究[J]. 水生生物学报, 2020, 44(5): 1080-1086. doi: 10.7541/2020.125
    [28]
    舒卫先, 胡菊香, 陈胜, 等. 流域治理后生态恢复期的沙颍河干流底栖动物群落结构分析[J]. 水生态学杂志, 2014, 35(4): 35-42. doi: 10.3969/j.issn.1674-3075.2014.04.006
    [29]
    王雪辉, 杜飞雁, 邱永松, 等. 1980—2007年大亚湾鱼类物种多样性、区系特征和数量变化[J]. 应用生态学报, 2010, 21(9): 2403-2410.
    [30]
    许友伟, 江艳娥, 范江涛, 等. 南海中部海域秋冬季中层渔业生物群落结构的初步研究[J]. 南方水产科学, 2016, 12(4): 49-56. doi: 10.3969/j.issn.2095-0780.2016.04.006
    [31]
    袁梦, 陈作志, 张俊, 等. 南海北部陆坡海域中层渔业生物群落结构特征[J]. 南方水产科学, 2018, 14(1): 85-91. doi: 10.3969/j.issn.20950780.2018.01.011
    [32]
    ZHANG J, WANG X L, JIANG Y, et al. Species composition and biomass density of mesopelagic nekton of the South China Sea continental slope[J]. Deep-Sea Res II, 2019, 167(C): 105-120.
    [33]
    BARJAU-GONZALEZ E, RODRIGUEZ-ROMREO J, GALVAN-MAGANA F, et al. Changes in the taxonomic diversity of the reef fish community of San José Island, Gulf of California, Mexico[J]. Biodivers Conserv, 2012, 21(14): 3543-3554. doi: 10.1007/s10531-012-0378-z
    [34]
    李媛洁, 张俊, 陈作志, 等. 南沙群岛渚碧礁鱼类分类多样性研究[J]. 南方水产科学, 2020, 16(1): 36-41. doi: 10.12131/20190159
    [35]
    李圣法. 东海大陆架鱼类群落生态学研究-空间格局及其多样性[D]. 上海: 华东师范大学, 2005: 1-154.
    [36]
    曾晓光, 李娜娜, 杨权, 等. 南沙群岛西南部陆架海域鱼类分类的多样性[J]. 水产学报, 2012, 36(4): 592-600.
    [37]
    张衡. 鱼类分类多样性估算方法在长江河口区的应用[J]. 华东师范大学学报 (自然科学版), 2007(2): 11-22.
    [38]
    史赟荣, 李永振, 卢伟华, 等. 东沙群岛珊瑚礁海域鱼类物种分类多样性研究[J]. 南方水产, 2009, 5(2): 10-16.
    [39]
    WANG X L, ZHANG J, ZHAO X Y, et al. Vertical distribution and diel migration of mesopelagic fishes on the northern slope of the South China Sea[J]. Deep-Sea Res II, 2019, 167(C): 128-141.
  • Cited by

    Periodical cited type(4)

    1. 赖胜,杨慧林,陈美玲,龙馨怡,刘淑丽,简敏菲. 鄱阳湖南矶湿地苔草植被根际土壤微生物群落结构分析. 江西师范大学学报(自然科学版). 2023(01): 82-90 .
    2. 冯敬宾,任春华,江晓,严岩,董俊德,胡超群. 大亚湾夏季表层浮游细菌生物量分布与环境变量的关系. 海洋湖沼通报. 2019(02): 81-89 .
    3. 关统伟,向慧平,王鹏昊,邓奥宇,董丹,赵顺先,张习超. 基于高通量测序的郫县豆瓣不同发酵期细菌群落结构及其动态演替. 食品科学. 2018(04): 106-111 .
    4. 宋宇. 草莓不同生长时期土壤微生物群落结构变化. 贵州农业科学. 2018(08): 59-62 .

    Other cited types(3)

Catalog

    Article views (916) PDF downloads (93) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return