Citation: | WANG Haifeng, CHENG Yongxu, LI Jinghao, XI Yewen, LI Jiayao. Effects of desiccation and resubmersion on oxidative stress response of crayfish (Procambarus clarkii)[J]. South China Fisheries Science, 2019, 15(5): 69-76. DOI: 10.12131/20190059 |
In order to study the effects of desiccation stress on crayfish (Procambarus clarkii) during crayfish seedling transportation, we investigated the antioxidant stress ability and survival rate of crayfish to desiccation stress (6 h, 12 h, 18 h, 24 h) and resubmersion in water (1 h, 6 h, 12 h) at (20±1) ℃ and with (50±5)% relative humidity (RH). The results show that the desiccation time should not exceed 18 h; the mortality rate at 24th hour was 53.3%, but no juveniles died during the resubmersion. During desiccation, no significant difference was observed in total antioxidant capacity (T-AOC, P>0.05); the superoxide dismutase (SOD) significantly reduced; the catalase (CAT) activity increased with time; the malondialdehyde (MDA) content reached the maximum value after 24 h (P<0.05), and the blood sugar and muscle lactic acid increased significantly with time (P<0.05). During the resubmersion period, the SOD and CAT activities fluctuated without an obvious rule; the MDA content restored to normal level after 12 h but the T-AOC maintained a high level. The lactate contents of 6 h and 12 h groups restored to the control level after resubmersion for 1 h. The blood sugar contents of all treatment groups were always higher than that of the control group (P<0.05). It is shown that the MDA content and SOD activity which can be regarded as immune indices are more sensitive to desiccation stress. The MDA, blood sugar and lactate contents can reflect the physiology of crayfish during resubmersion period.
[1] |
农业部渔业渔政管理局. 中国渔业统计年鉴2018[M]. 北京: 中国农业出版社, 2018: 23-24.
|
[2] |
谢佳彦, 朱爱意. 几种重要水产品活体运输技术研究[J]. 水产科学, 2010, 29(9): 532-536. doi: 10.3969/j.issn.1003-1111.2010.09.007
|
[3] |
姜令绪, 刘群, 王仁杰, 等. 三疣梭子蟹(Portunus trituberculatus)幼体不同干露温度下死亡率的研究[J]. 海洋与湖沼, 2012, 43(1): 127-131.
|
[4] |
姜娜, 王芳, 路允良, 等. 干露对三疣梭子蟹抗氧化和应激能力的影响[J]. 水产学报, 2014, 38(12): 1996-2004.
|
[5] |
王琦, 李健, 李吉涛, 等. 干露胁迫对脊尾白虾(Exopalaemon carinicauda) HSP70和ferritin基因表达的影响[J]. 海洋与湖沼, 2013, 44(2): 409-414.
|
[6] |
OMORI K, IRAWAN B, KIKUTANI Y. Studies on the salinity and desiccation tolerances of Helice tridens and Helice japonica (Decapoda: Grapsidae)[J]. Hydrobiologia, 1998, 386(1/2/3): 27-36.
|
[7] |
LORENZON S, GIULIANINI P G, LIBRALATO S, et al. Stress effect of two different transport systems on the physiological profiles of the crab Cancer pagurus[J]. Aquaculture, 2008, 278(1/2/3/4): 156-163.
|
[8] |
常志成, 温海深, 张美昭, 等. 溶解氧水平对花鲈幼鱼氧化应激与能量利用的影响及生理机制[J]. 中国海洋大学学报(自然科学版), 2018, 48(7): 20-28.
|
[9] |
段亚飞, 董宏标, 王芸, 等. 干露胁迫对日本囊对虾抗氧化酶活性的影响[J]. 南方水产科学, 2015, 11(4): 102-108. doi: 10.3969/j.issn.2095-0780.2015.04.015
|
[10] |
URBINA M A, PASCHKE K, GEBAUER P, et al. Physiological responses of the southern king crab, Lithodes santolla (Decapoda: Lithodidae), to aerial exposure[J]. Comp Biochem Phys A, 2013, 166(4): 538-545. doi: 10.1016/j.cbpa.2013.08.006
|
[11] |
HERMES-LIMA M, ZENTENO-SAVM T. Animal response to drastic changes in oxygen availability and physiological oxidative stress[J]. Comp Biochem Phys C, 2002, 133(4): 537-556.
|
[12] |
ROMERO M C, TAPELLA F, SOTELANO M P, et al. Oxidative stress in the subantarctic false king crab Paralomis granulosa during air exposure and subsequent re-submersion[J]. Aquaculture, 2011, 319(1): 205-210.
|
[13] |
田相利, 何瑞鹏, 钱圆, 等. 干露胁迫对刺参体壁非特异性免疫的影响[J]. 河北渔业, 2014(7): 21-26, 35. doi: 10.3969/j.issn.1004-6755.2014.07.006
|
[14] |
DUAN Y F, LIU P, LI J, et al. Expression profiles of selenium dependent glutathione peroxidase and glutathione S-transferase from Exopalaemon carinicauda in response to Vibrio anguillarum and WSSV challenge[J]. Fish Shellfish Immunol, 2013, 35(3): 661-670. doi: 10.1016/j.fsi.2013.05.016
|
[15] |
王丽, 韩艳楠, 金珊, 等. 水体Cu2+对三疣梭子蟹主要组织ROS含量和抗氧化能力的影响[J]. 农业环境科学学报, 2015, 34(7): 1261-1268.
|
[16] |
ZENTENO-SAVIN T, SALDIERNA R, AHUEJOTE-SANDOVAL M. Superoxide radical production in response to environmental hypoxia in cultured shrimp[J]. Comp Biochem Phys C, 2006, 142(3): 301-308.
|
[17] |
管越强, 李利, 王慧春, 等. 低氧胁迫对日本沼虾呼吸代谢和抗氧化能力的影响[J]. 河北大学学报(自然科学版), 2010, 30(3): 301-306. doi: 10.3969/j.issn.1000-1565.2010.03.017
|
[18] |
De OLIVEIRA U O, da ROSA ARAÚJO A S, BELLÓ-KLEIN A, et al. Effects of environmental anoxia and different periods of reoxygenation on oxidative balance in gills of the estuarine crab Chasmagnathus granulata[J]. Comp Biochem Phys B, 2005, 140(1): 51-57. doi: 10.1016/j.cbpc.2004.09.026
|
[19] |
李毅平, 龚和. 昆虫体内抗氧化系统研究进展[J]. 生命科学, 1998, 10(5): 240-243.
|
[20] |
APARICIO-SIMON B, PINON M, RACOTTA R A. Neuroendocrine and metabolic responses of Pacific whiteleg shrimp Litopenaeus vannamei exposed to acute handling stress[J]. Aquaculture, 2010, 298(3/4): 308-314.
|
[21] |
区又君, 陈世喜, 王鹏飞, 等. 低氧环境下卵形鲳鲹的氧化应激响应与生理代谢相关指标的研究[J]. 南方水产科学, 2017, 13(3): 120-124. doi: 10.3969/j.issn.2095-0780.2017.03.016
|
[22] |
邱立国, 江秀, 周代金, 等. 凡纳滨对虾不同家系应答逆境胁迫的比较研究[J]. 黑龙江畜牧兽医, 2017(7): 240-243.
|
[23] |
聂鸿涛, 卢长炜, 柴成林, 等. 低氧胁迫对菲律宾蛤仔抗氧化酶的影响[J]. 海洋科学, 2017, 41(11): 32-37. doi: 10.11759/hykx20170715005
|
[24] |
ELLINGTON W R. The recovery from anaerobic metabolism in invertebrates[J]. J Exp Zool, 1983, 228(3): 431-444. doi: 10.1002/jez.1402280305
|
[25] |
PATERSON B D, GRAUF S G, SMITH R A. Haemolymph chemistry of tropical rock lobsters (Panulirus ornatus) brought onto a mother ship from a catching dinghy in Torres Strait[J]. Mar Freshw Res, 1997, 48(8): 835-838. doi: 10.1071/MF97069
|
[26] |
OLIVEIRA G T, ERCHLER P, ROSSIO I C, et al. Hepatopancreas gluconeogenesis during anoxia and post-anoxia recovery in Chasmagnathus granulata crabs maintained on high-protein or carbohydrate-rich diets[J]. J Exp Zool Part A, 2004, 301A(3): 240-248. doi: 10.1002/(ISSN)1097-010X
|
[1] | WU Fan, LI Yunfeng, MA Baoshan, ZHANG Yan, RU Huijun, SHEN Ziwei, WEI Nian. Fish community structure and environmental impact factors in Three Gorges Reservoir during summer and autumn[J]. South China Fisheries Science. DOI: 10.12131/20240199 |
[2] | TONG Fei, FENG Xue, YUAN Huarong, CHEN Yuxiang, SHU Liming, LIU Yan, CHEN Pimao. Study on disturbance of oyster culture on environmental factors and bacterioplankton in Dapeng Cove[J]. South China Fisheries Science, 2024, 20(5): 32-41. DOI: 10.12131/20240138 |
[3] | MA Youcheng, ZHU Guoping, ZHANG Jian, WANG Xiao, ZHANG Honglin, SHI Jiangao. Influence of environmental factors on CPUE of three different fishing methods in skipjack tuna fisheries[J]. South China Fisheries Science, 2023, 19(6): 11-20. DOI: 10.12131/20230102 |
[4] | GONG Yuyan, XIAO Yayuan, XU Shannan, LIU Yong, YANG Yutao, HUANG Zirong, LI Chunhou. Zooplankton community structure in Hailing Bay and its relationship with primary environmental factors[J]. South China Fisheries Science, 2019, 15(6): 49-55. DOI: 10.12131/20180220 |
[5] | YANG Baoli, WANG Ruixuan, SHI Shaokun, WANG Jiangyong. Density variation of Vibrio in ablone aquaculture water and its relationship with environmental factors[J]. South China Fisheries Science, 2015, 11(3): 95-102. DOI: 10.3969/j.issn.2095-0780.2015.03.015 |
[6] | SHEN Yonglong, HUANG Jintian, GE Xianping, WANG Aimin, LV Fu, SHEN Nannan, CAI Wancun. Effects of several key environmental factors on survival of artificial breeding of Onchidium struma[J]. South China Fisheries Science, 2012, 8(6): 57-64. DOI: 10.3969/j.issn.2095-0780.2012.06.009 |
[7] | CAO Yucheng, LI Zhuojia, YANG Yingying, WEN Guoliang, HUANG Honghui. Effects of Bacillus licheniformis strain De on growth of Sparus latus and main environmental factors in aquaculture pond[J]. South China Fisheries Science, 2010, 6(3): 1-6. DOI: 10.3969/j.issn.1673-2227.2010.03.001 |
[8] | ZHOU Haiping, LI Zhuojia, YANG Yingying, CHEN Yongqing. Effects of environmental factors on the growth of Lactobacillus spp[J]. South China Fisheries Science, 2006, 2(4): 65-67. |
[9] | GUO Genxi. The existing problem and basic countermeasure in the industrialization development of deep-water net cage culture in China[J]. South China Fisheries Science, 2006, 2(1): 66-70. |
[10] | JIANG Zeng-jie, FANG Jian-guang. Effects of fouling organisms on shellfish cultivation and its prevention[J]. South China Fisheries Science, 2005, 1(3): 65-68. |
1. |
王旭蕾,高进,齐鑫,王永波,陈傅晓,刘金叶,符书源. 5种石斑鱼全基因组微卫星筛选与特征分析. 渔业科学进展. 2024(03): 149-158 .
![]() | |
2. |
崔同心,刘海洋,张晋,欧密,罗青,费树站,陈昆慈,赵建. 基于单核苷酸多态性标记的7个斑鳢野生群体的遗传结构和遗传多样性分析. 中国水产科学. 2024(07): 829-838 .
![]() | |
3. |
马骞,吴雨薇,王刘永,赵晓龙,周启苓,陈刚,黄建盛. 军曹鱼全基因组微卫星特征分析与多态性标记的筛选及应用. 渔业科学进展. 2023(04): 135-144 .
![]() | |
4. |
范士琦,冯婧昀,苗晓敏,郭慧,陶怡曦,李云. 重庆养殖场鳜群体微卫星遗传多样性研究. 水产养殖. 2023(07): 18-23 .
![]() | |
5. |
杨尉,司圆圆,许瑞雯,陈兴汉. 基于基因组survey数据的疣吻沙蚕微卫星特征分析及多态标记开发. 南方水产科学. 2023(05): 123-133 .
![]() | |
6. |
彭冶,李杰,王涛,张凯,宁先会,暨杰,尹绍武. 瓦氏黄颡鱼全基因组微卫星的分布特征及其定位的初步研究. 南方水产科学. 2022(01): 90-98 .
![]() | |
7. |
田镇,陈爱华,吴杨平,陈素华,张雨,曹奕,张志东,李秋洁. 文蛤转录组中微卫星位点生物信息分析. 海洋渔业. 2021(02): 160-167 .
![]() | |
8. |
梁霞,王慧琪,马宇璇,宋磊,吴超,李亮徽,张国松. 鲤鱼(Cyprinus carpio)全基因组微卫星分布特征研究. 南京师大学报(自然科学版). 2021(03): 103-111 .
![]() |