LI Dandan, CHEN Pimao, ZHU Aiyi, YUAN Huarong, FENG Xue, WANG Wenjie, CHEN Wenjing, LONG Xinling. Effect of transport density on survival rate of black seabream sealed in oxygenated plastic bag during stock enhancement[J]. South China Fisheries Science, 2018, 14(5): 36-44. DOI: 10.3969/j.issn.2095-0780.2018.05.005
Citation: LI Dandan, CHEN Pimao, ZHU Aiyi, YUAN Huarong, FENG Xue, WANG Wenjie, CHEN Wenjing, LONG Xinling. Effect of transport density on survival rate of black seabream sealed in oxygenated plastic bag during stock enhancement[J]. South China Fisheries Science, 2018, 14(5): 36-44. DOI: 10.3969/j.issn.2095-0780.2018.05.005

Effect of transport density on survival rate of black seabream sealed in oxygenated plastic bag during stock enhancement

More Information
  • Received Date: November 22, 2017
  • Revised Date: April 18, 2018
  • Available Online: December 04, 2018
  • To investigate the optimum transport density and post-transport recovery for juvenile black sea bream (Sparus nacrocephalus) during the stock enhancement, we sealed the juveniles (length of 9–11.7 cm) by oxygenated plastic bags and transported them for 2.75 h at different densities (10 ind., 15 ind., 20 ind., 25 ind. and 30 ind.) at sea water temperature of 27.7 ℃, sainilty of 29, pH of 8.04 and dissolved oxygen of 8.8 mg·L–1. Then we observed the effect of transport density on the total protein (TP), superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) in serum and muscle at 0th, 6th, 12th, 24th and 48th hour. The results show that the TP and MDA concentrations in serum and muscle in groups of 10 ind. and 15 ind. were lower than that in group of 30 ind. after transport (P<0.05); while the situation was just on the contrary for the activities of SOD and CAT (P<0.05). In the aspect of recovery level, groups of 10 ind. and 15 ind. had the best recovery of the indicators in serum and muscle, followed by groups of 20 ind. and 25 ind. while group of 30 ind. had the slowest recovery and failed to fully recovery at the end of the experiment. In consideration of economic factors, 25 ind. per bag is recommended when the 9–11.7 cm juvenile black seabreams are transported for 2.75 h at water temperature of 27.7 ℃, salinity of 29 and pH of 8.04 sealed in oxygenated plastic bag.
  • [1]
    樊冀蓉, 吴仁协, 赵元莙, 等. 中国鲷科鱼类分类和系统发育研究进展[J]. 中国水产科学, 2011, 18(2): 472-480.
    [2]
    中华人民共和国农业部. 《农业部关于做好“十三五”水生生物增殖放流工作的指导意见》编制说明[J]. 中国水产, 2016(10): 14-15.
    [3]
    SULIKOWSKI J A, FAIRCHILD E A, RENNELS N, et al. The effects of tagging and transport on stress in juvenile winter flounder, Pseudopleuronectes americanus: implications for successful stock enhancement[J]. J World Aquacult Soc, 2005, 36(1): 148-156.
    [4]
    BARTON B A, PETER R E. Plasma cortisol stress response in fingerling rainbow trout, Salmo gairdneri Richardson, to various transport conditions, anaesthesia, and cold shock[J]. J Fish Biol, 1982, 20: 39-51.
    [5]
    ROBERTSON L, THOMAS P, ARNOLD C R. Plasma cortisol and secondary stress responses of cultured red drum (Scianops ocellatus) to several transportation procedures[J]. Aquaculture, 1988, 68(2): 115-130.
    [6]
    THOMAS P, ROBERTSON L. Plasma cortisol and glucose stress responses of red drum (Sciaenops ocellatus) to handling and shallow water stressors and anesthesia with MS-222, quinaldine sulfate and metomidate[J]. Aquaculture, 1991, 96(1): 69-86.
    [7]
    BARTON B A, HAUKENES A H, PARSONS B G, et al. Plasma cortisol and chloride stress responses in juvenile walleyes during capture, transport, and stocking procedures[J]. N Am J Aquacult, 2003, 65(3): 210-219.
    [8]
    SHRIMPTON J M, ZYDLEWSKI J D, MCCORMICK S D. The stress response of juvenile American shad to handling and confinement is greater during migration in freshwater than in seawater[J]. Trans Am Fish Soc, 2001, 130(6): 1203-1210.
    [9]
    URBINATI E C, de ABREU J S, da SILVA CARNARGO A C, et al. Loading and transport stress of juvenile matrinxã (Brycon cephalus, Characidae) at various densities[J]. Aquaculture, 2004, 229(1/2/3/4): 389-400.
    [10]
    周玉, 郭文场, 杨振国, 等. 鱼类血液学指标研究的进展[J]. 上海水产大学学报, 2001, 10(2): 163-165.
    [11]
    尾崎久雄. 鱼类血液与循环生理[M]. 上海: 上海科学技术出版社, 1982: 74-92.
    [12]
    孙学亮, 邢克智, 陈成勋, 等. 急性温度胁迫对半滑舌鳎血液指标的影响[J]. 水产科学, 2010, 26(7): 387-392.
    [13]
    赛娜, 宋凯. 运输胁迫对牙鲆血液生化指标的影响[J]. 黑龙江畜牧兽医, 2011, 7(13): 151-152.
    [14]
    WINSTON G W. Oxidants and antioxidants in aquatic animals[J]. Comp Biochem Physiol C, 1991, 100(1/2): 173-176.
    [15]
    刘伟成, 冀德伟, 单乐州, 等. 臭氧对条石鲷幼鱼鳃组织结构和抗氧化系统的影响[J]. 水产学报, 2011, 35(9): 1384-1391.
    [16]
    王好, 庄平, 章龙珍, 等. 盐度对点篮子鱼的存活、生长及抗氧化防御系统的影响[J]. 水产学报, 2011, 35(1): 66-73.
    [17]
    孙鹏, 柴学军, 尹飞, 等. 运输胁迫下日本黄姑鱼肝脏抗氧化系统的响应[J]. 海洋渔业, 2014, 36(5): 469-474.
    [18]
    胡静, 吴开畅, 叶乐, 等. 急性盐度胁迫对克氏双锯鱼幼鱼过氧化氢酶的影响[J]. 南方水产科学, 2015, 11(6): 73-78.
    [19]
    孙鹏, 尹飞, 彭士明, 等. 盐度对条石鲷幼鱼肝脏抗氧化酶活力的影响[J]. 海洋渔业, 2010, 32(2): 154-159.
    [20]
    宋志明, 刘鉴毅, 庄平, 等. 低温胁迫对点篮子鱼幼鱼肝脏抗氧化酶活性及丙二醛含量的影响[J]. 海洋渔业, 2015, 37(2): 142-150.
    [21]
    陈海刚, 马胜伟, 林钦, 等. 氯化三丁基锡对黑鲷鳃和肝组织SOD、MDA和GPx的影响[J]. 南方水产, 2009, 5(2): 23-27.
    [22]
    尤宏争, 石洪玥, 贾磊, 等. 短途运输胁迫对珍珠龙胆石斑鱼血清酶活力及葡萄糖含量的影响[J]. 经济动物学报, 2017, 21(3): 1-8.
    [23]
    于丽娟, 李秀明, 易建华, 等. 不同水流速度对中华倒刺鲃幼鱼自由基代谢的影响[J]. 中国水产科学, 2014, 21(1): 101-107.
    [24]
    SHIN Y A, LEE J H, SONG W, et al. Exercise training improves the antioxidant enzyme activity with no changes of telomere length[J]. Mech Ageing Dev, 2008, 129(5): 254-260.
    [25]
    廖雅丽, 张晨捷, 彭士明, 等. 盐度对云纹石斑鱼抗氧化酶及溶菌酶活性的影响[J]. 上海海洋大学学报, 2016, 25(2): 169-176.
    [26]
    苏慧, 区又君, 李加儿, 等. 饥饿对卵形鲳鲹幼鱼不同组织抗氧化能力、Na+/K+-ATP酶活力和鱼体生化组成的影响[J]. 南方水产科学, 2012, 8(6): 28-36.
    [27]
    肖涛, 王维娜, 王安利, 等. 维生素E对水生动物抗氧化作用的研究进展[J]. 海洋科学, 2007, 31(5): 76-79, 89.
    [28]
    吴成龙. 皱纹盘鲍抗氧化基因的克隆及其在营养调控下表达的研究[D]. 青岛: 中国海洋大学, 2010: 4-11.
    [29]
    吴庆元, 蒋玫, 李磊, 等. 低盐度胁迫对鲻鱼(Mugil cephalus)幼鱼鳃丝、肌肉、肠Na+-K+-ATP酶活性和MDA含量的影响[J]. 生态与农村环境学报, 2014, 30(4): 481-487.
  • Related Articles

    [1]CHEN Guobao, CHENG Gao, NIU Lulian, ZOU Jianwei, YU Jie, CHEN Pimao. Application of fishery acoustic frequency difference technology in fishery resource assessment of marine ranching in southern sea area of Yintan, Guangxi[J]. South China Fisheries Science, 2025, 21(2): 38-46. DOI: 10.12131/20240129
    [2]FENG Xue, TONG Fei, YUAN Huarong, ZHAO Xueqian, CHEN Pimao. Distribution characteristics and ecological risk assessment of heavy metals in sediments in adjacent waters of Wailingding marine ranching[J]. South China Fisheries Science, 2024, 20(5): 91-102. DOI: 10.12131/20240101
    [3]NIU Lulian, CHEN Guobao, ZOU Jianwei, TONG Fei, YU Jie. Assessment of fishery resources in southern sea area of Yintan Marine Ranching, Guangxi Province[J]. South China Fisheries Science, 2024, 20(5): 53-62. DOI: 10.12131/20230236
    [4]FENG Xue, DAI Xiaojie, FAN Jiangtao, CHEN Pimao. Seasonal variation of fishery resources in Wailingding marine ranching and adjacent waters[J]. South China Fisheries Science, 2023, 19(5): 32-38. DOI: 10.12131/20220308
    [5]XIE Xiaoyan, CHEN Pimao, TONG Fei, YUAN Huarong, FENG Xue, YU Jing, YU Jie, SHU Liming. Site selection of marine ranching in Wailingding Island sea area of Zhuhai[J]. South China Fisheries Science, 2022, 18(5): 18-29. DOI: 10.12131/20210241
    [6]ZHANG Jun, QIU Yongsong, CHEN Zuozhi, ZHANG Peng, ZHANG Kui, FAN Jiangtao, CHEN Guobao, CAI Yancong, SUN Mingshuai. Advances in pelagic fishery resources survey and assessment in open South China Sea[J]. South China Fisheries Science, 2018, 14(6): 118-127. DOI: 10.12131/20180037
    [7]ZENG Lei, CHEN Guobao, YU Jie. Acoustic assessment of fishery resources and spatial distribution in Nan'ao Island area[J]. South China Fisheries Science, 2018, 14(2): 26-35. DOI: 10.3969/j.issn.2095-0780.2018.02.004
    [8]MA Huan, QIN Chuanxin, CHEN Pimao, FENG Xue, YUAN Huarong, LI Xiaoguo, LIN Huijie. Study of biomass carbon storage in Zhelin Bay marine ranch of South China Sea[J]. South China Fisheries Science, 2017, 13(6): 56-64. DOI: 10.3969/j.issn.2095-0780.2017.06.007
    [9]LI Chun-hou, QI Zhan-hui, HUANG Hong-hui, LIU Yong, KONG Xiao-lan, XIAO Ya-yuan. Review on marine carbon sink and development of carbon sink fisheries in South China Sea[J]. South China Fisheries Science, 2010, 6(6): 81-86. DOI: 10.3969/j.issn.1673-2227.2010.06.015
    [10]NIU Mingxiang, ZHAO Xianyong. Application of satellite remote sensing and GIS technology to the research of marine fishery resources[J]. South China Fisheries Science, 2008, 4(3): 70-74.
  • Cited by

    Periodical cited type(10)

    1. 曾高雄. 中国圆田螺和梨形环棱螺的形态学分析和繁殖力比较研究. 渔业研究. 2025(02): 203-211 .
    2. 金武,马学艳,彭刚,陈琬雯,闻海波. 梨形环棱螺11个地理种群的几何形态学分析. 中国农学通报. 2024(02): 159-164 .
    3. 王海山,陈治,李由明,叶乐. 西沙群岛两种寄居蟹对定居螺壳的选择偏好的研究. 热带海洋学报. 2024(05): 84-92 .
    4. 荆圆圆,胡凡光,刘广斌,吴海一,孙铭,陈群,张天文. 山东沿海不同地理群体中国蛤蜊形态差异分析. 海洋渔业. 2023(01): 95-104 .
    5. 舒予,史令,赖思琦,田莹,常亚青. 不同水深养殖栉孔扇贝的形态测量学研究和比较. 水生生物学报. 2021(01): 132-139 .
    6. 黄家锐,但小琴,文衍红,罗福广,黄杰,王卫民. 中国圆田螺与中华圆田螺形态比较研究. 中国农学通报. 2021(05): 117-123 .
    7. 邹琰,李莉,王英俊,吴莹莹,刘童,宋爱环,刘洪军. 山东沿海不同地理群体菲律宾蛤仔形态变异分析. 水产学杂志. 2021(03): 28-33 .
    8. 但小琴,程果,文衍红,罗福广,黄杰,王卫民. 三种环棱螺形态学比较研究. 淡水渔业. 2020(03): 50-55 .
    9. 罗虹霞,陈丕茂,黎小国,袁华荣,王莲莲,冯雪. 南海紫海胆6个野生群体的形态差异分析. 广东农业科学. 2015(10): 114-119 .
    10. 罗虹霞,陈丕茂,黎小国,袁华荣,王莲莲,冯雪. 南海紫海胆6个野生群体的形态差异分析(英文). Agricultural Science & Technology. 2015(12): 2774-2778+2808 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return