HUANG Chunhong, LI Jiali, LEI Yanju, XIE Zhongguo. Relationship of hepatopancreas colours with lipid and mineral contents in cultured grass carp during winter[J]. South China Fisheries Science, 2019, 15(6): 19-24. DOI: 10.12131/20190073
Citation: HUANG Chunhong, LI Jiali, LEI Yanju, XIE Zhongguo. Relationship of hepatopancreas colours with lipid and mineral contents in cultured grass carp during winter[J]. South China Fisheries Science, 2019, 15(6): 19-24. DOI: 10.12131/20190073

Relationship of hepatopancreas colours with lipid and mineral contents in cultured grass carp during winter

More Information
  • Received Date: March 28, 2019
  • Revised Date: May 19, 2019
  • Accepted Date: July 07, 2019
  • Available Online: July 14, 2019
  • To clarify the relationship between hepatopancreas colours and lipid and mineral contents of grass carp (Ctenopharyngodon idella), we analyzed the moisture, total lipid and minerals contents of hepatopancreas with different colours during winter. Results show that the average moisture and lipid contents in kermesinus, spot, white and yellow hepatopancreas were 77.78%, 70.98%, 67.91%, 64.01% and 2.06%, 2.85%, 4.24%, 5.28%, respectively, which were significantly different (P<0.05). Compared with kermesinus hepatopancreas, the Ca, Cr, Zn and Se contents in spot, white and yellow hepatopancreas all increased significantly (P<0.05). Cu and As contents in spot hepatopancreas, and Mg, Fe, Cu contents in white hepatopancreas were lower than those in kermesinus hepatopancreas. However, all the detected minerals in yellow hepatopancreas were higher than those in kermesinus hepatopancreas. Briefly, there was less lipid in hepatopancreas of grass carp during winter, but when the hepatopancreas colours changed from kermesinus to spot, white and yellow, the moisture  contents gradually decreased but the lipid gradually increased. Compared with kermesinus hepatopancreas that had lower lipid content, the contents of Ca, Cr, Zn and Se in hepatopancreas with the other colours which had higher lipid contents significantly increased (P<0.05).

  • [1]
    农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2018: 45.
    [2]
    雷晓中, 汪亮, 温周瑞, 等. 三种不同养殖模式对草鱼肝胰脏结构与功能的影响[J]. 淡水渔业, 2015, 45(6): 59-62, 96. doi: 10.3969/j.issn.1000-6907.2015.06.010
    [3]
    陈科全, 叶元土, 蔡春芳, 等. 饲料氧化鱼油对草鱼肝胰脏结构和功能的损伤[J]. 水生生物学报, 2016, 40(4): 793-803. doi: 10.7541/2016.103
    [4]
    LIN D, MAO Y Q, CAI F S. Nutritional lipid liver disease of grass carp Ctenopharyngodon idullus (C. et V.)[J]. Chin J Oceanol Limn, 1990, 8(4): 363-373. doi: 10.1007/BF02849682
    [5]
    田娟, 文华, 曾令兵, 等. 草鱼食用鱼不同颜色肝脏脂肪肝程度的判断[J]. 浙江大学学报(农业与生命科学版), 2011, 37(5): 557-564. doi: 10.3785/j.issn.1008-9209.2011.05.014
    [6]
    杨天俊, 陈彦良, 刘文舒, 等. 高脂饲料中添加绿原酸对草鱼生长性能和脂质代谢的影响[J]. 动物营养学报, 2018, 30(8): 3219-3228. doi: 10.3969/j.issn.1006-267x.2018.08.041
    [7]
    王一飞. 投喂蚕豆对草鱼脂质代谢的影响[D]. 杨凌: 西北农林科技大学, 2015: 1.
    [8]
    TIAN J J, JI H, WANG Y F, et al. Lipid accumulation in grass carp (Ctenopharyngodon idellus) fed faba beans (Vicia faba L.)[J]. Fish Physiol Biochem, 2019, 45(2): 631-642. doi: 10.1007/s10695-018-0589-7
    [9]
    曹俊明, 关国强, 刘永坚, 等. 饲料蛋白质水平影响草鱼肝胰肝脂肪酸组成[J]. 中山大学学报 (自然科学版), 1997, 36(5): 64-68.
    [10]
    TANG Q, FENG L, JIANG W, et al. Effects of dietary Copper on growth, digestive, and brush border enzyme activities and antioxidant defense of hepatopancreas and intestine for young grass carp (Ctenopharyngodon idella)[J]. Biol Trace Elem Res, 2013, 155(3): 370-380. doi: 10.1007/s12011-013-9785-6
    [11]
    张丽. 铁对生长中期草鱼肉质, 抗氧化能力和免疫功能的影响[D]. 雅安: 四川农业大学, 2013:24-31.
    [12]
    伍云萍. 锌对生长中期草鱼肉质, 抗氧化能力和免疫功能的影响[D]. 雅安: 四川农业大学, 2013: 7-8.
    [13]
    苏传福, 罗莉, 李芹, 等. 硒对草鱼抗氧化功能及组织结构的影响[J]. 西南师范大学学报(自然科学版), 2008, 33(5): 69-75.
    [14]
    余飞苑, 刘浩宇, 刘锡仪. 高脂饮食对小鼠脂代谢和矿物元素代谢的影响[J]. 中国组织工程研究与临床康复, 2007, 11(8): 1502-1504. doi: 10.3321/j.issn:1673-8225.2007.08.045
    [15]
    汪安利, 祖晋锋, 时文强, 等. 白鲢鱼营养成分分析与评价[J]. 食品安全质量检测学报, 2019, 10(8): 2219-2224.
    [16]
    汪开毓, 苗常鸿, 黄锦炉, 等. 投喂高脂饲料后草鱼主要生化指标和乙酰辅酶A羧化酶1 mRNA表达的变化[J]. 动物营养学报, 2012, 24(12): 2375-2383. doi: 10.3969/j.issn.1006-267x.2012.12.012
    [17]
    陈科全, 叶元土, 蔡春芳, 等. 饲料中豆粕含量对草鱼肝胰脏结构和功能的影响[J]. 动物营养学报, 2014, 26(7): 1873-1879. doi: 10.3969/j.issn.1006-267x.2014.07.020
    [18]
    朱瑞俊, 李小勤, 谢骏, 等. 饲料中添加氯化胆碱对草鱼成鱼生长、脂肪沉积和脂肪代谢酶活性的影响[J]. 中国水产科学, 2010, 17(3): 527-535.
    [19]
    吴春艳. 垂盆草提取物对草鱼脂肪肝模型药效作用研究[D]. 雅安: 四川农业大学, 2013: 29-38.
    [20]
    刘猛, 叶元土, 蔡春芳, 等. 湖泊野生团头鲂健康评价指标体系的研究[J]. 上海海洋大学学报, 2013, 22(2): 178-188.
    [21]
    LUSHCHAK O V, KUBRAK O I, LOZINSKY O V, et al. Chromium (III) induces oxidative stress in goldfish liver and kidney[J]. Aquat Tox, 2009, 93(1): 45-52. doi: 10.1016/j.aquatox.2009.03.007
    [22]
    KUBRAK O I, HUSAK V V, ROVENKO B M, et al. Cobalt-induced oxidative stress in brain, liver and kidney of goldfish Carassius auratus[J]. Chemosphere, 2011, 85(6): 983-989. doi: 10.1016/j.chemosphere.2011.06.078
    [23]
    ZHU Q L, LUO Z, ZHUO M Q, et al. In vitro exposure to copper influences lipid metabolism in hepatocytes from grass carp (Ctenopharyngodon idellus)[J]. Fish Physiol Biochem, 2014, 40(2): 595-605. doi: 10.1007/s10695-013-9869-4
    [24]
    CHEN Q L, LUO Z, LIU X, et al. Effects of waterborne chronic copper exposure on hepatic lipid metabolism and metal-element composition in Synechogobius hasta[J]. Arch Environ Contom Tox, 2013, 64(2): 301-315.
    [25]
    CHEN Q L, LUO Z, PAN Y X, et al. Differential induction of enzymes and genes involved in lipid metabolism in liver and visceral adipose tissue of juvenile yellow catfish Pelteobagrus fulvidraco exposed to Copper[J]. Aquat Toxicol, 2013, 136(3): 72-78.
    [26]
    CHEN Q L, LUO Z, ZHENG J L, et al. Protective effects of calcium on copper toxicity in Pelteobagrus fulvidraco: copper accumulation, enzymatic activities, histology[J]. Ecotox Environ Safe, 2012, 76(2): 126-134.
    [27]
    孔祥会, 郭彦玲, 刘占才, 等. 汞离子暴露下草鱼肝胰脏过氧化氢酶活性动态变化[J]. 淡水渔业, 2007, 37(4): 34-36. doi: 10.3969/j.issn.1000-6907.2007.04.007
    [28]
    LIU T L, HUA W, MING J, et al. Effect of dietary chromium picolinate on growth performance and blood parameters in grass carp fingerling, Ctenopharyngodon idellus[J]. Fish Physiol Biochem, 2010, 36(3): 565-572. doi: 10.1007/s10695-009-9327-5
    [29]
    LIANG J J, YANG H J, LIU Y J, et al. Dietary zinc requirement of juvenile grass carp (Ctenopharyngodon idella) based on growth and mineralization[J]. Aquacult Nutr, 2018, 18(4): 380-387.
    [30]
    汪福保, 罗莉, 文华, 等. 镁对草鱼生长、形体、肝功能和糖代谢的影响[J]. 淡水渔业, 2011, 41(2): 57-62, 68. doi: 10.3969/j.issn.1000-6907.2011.02.009
  • Related Articles

    [1]LIU Yu, WANG Xuehui, DU Feiyan, LIU Bilin, ZHANG Peng, LIU Mengna, QIU Yongsong. Difference analysis of trace elements in statolith of Sthenoteuthis oualaniensis in South China Sea[J]. South China Fisheries Science, 2019, 15(5): 15-24. DOI: 10.12131/20190039
    [2]ZHANG Yue, DUAN Yafei, DONG Hongbiao, ZHANG Jiasong. Effects of poly-β-hydroxybutyrate (PHB) on immune and digestive indicators in hepatopancreas of Litopenaeus vannamei[J]. South China Fisheries Science, 2017, 13(5): 78-84. DOI: 10.3969/j.issn.2095-0780.2017.05.011
    [3]JIANG Yan′e, FANG Zhanqiang, LIN Zhaojin, ZHANG Peng, CHEN Zuozhi. Trace elements in statoliths of Sthenoteuthis oualaniensis in the South China Sea[J]. South China Fisheries Science, 2016, 12(4): 71-79. DOI: 10.3969/j.issn.2095-0780.2016.04.009
    [4]YANG Xun, HAO Zongdi, ZHANG Sen, LIU Pinghuai. Effects of trophic elements and pH on growth rate and lipid productivity of Chlorella zofingiensis cells[J]. South China Fisheries Science, 2013, 9(4): 33-38. DOI: 10.3969/j.issn.2095-0780.2013.04.006
    [5]WANG Yajun, LIN Wenhui, YANG Zhihui, JIANG Jianwen, JIANG Huanbin, CHEN Dongming. Effects of replacement of fish meal by fermented soybean meal in the diet for Japanese eel (Anguill japonica) on growth performance and content of mineral elements in muscle and skin[J]. South China Fisheries Science, 2013, 9(3): 39-43. DOI: 10.3969/j.issn.2095-0780.2013.03.007
    [6]WANG Maolin, ZHANG Xiumei, GAO Tianxiang, ZHANG Peidong. Effects of Ca2+ concentrations in seawater on element content of fish body and otolith of juvenile Paralichthys olivaceus[J]. South China Fisheries Science, 2013, 9(3): 31-38. DOI: 10.3969/j.issn.2095-0780.2013.03.006
    [7]WANG Xu, LI Na, GENG Anjing, YANG Hui, WANG Fuhua. Determination of five arsenic species in seafood using high performance liquid chromatography (HPLC) coupled with inductively coupled plasma mass spectrometry (ICP-MS)[J]. South China Fisheries Science, 2013, 9(2): 50-56. DOI: 10.3969/j.issn.2095-0780.2013.02.009
    [8]CAO Junming, YAN Jing, WANG Guoxia, HUANG Yanhua, ZHANG Rongbin, ZHOU Tingting, LIU Qunfang, SUN Zhiwu. Effects of replacement of fish meal with housefly maggot meal on digestive enzymes, transaminases activities and hepatopancreas histological structure of Litopenaeus vannamei[J]. South China Fisheries Science, 2012, 8(5): 72-79. DOI: 10.3969/j.issn.2095-0780.2012.05.011
    [9]QIN Pei-wen, JI Li-li, FAN Run-zhen, XIAO Bi-hong, TANG Xiao-dan, SONG Wen-dong. Analysis of volatile components and trace elements in flesh of Pinctada martensii with black shell disease[J]. South China Fisheries Science, 2010, 6(2): 35-40. DOI: 10.3969/j.issn.1673-2227.2010.02.006
    [10]WANG Xiaowei, LI Chunhou, DAI Ming. Studies on limited nutrient factors in outer of Daya Bay in winter[J]. South China Fisheries Science, 2007, 3(4): 26-31.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (5155) PDF downloads (45) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return