CAO Zhengliang, WANG Zixian, LI Zhaocheng, JIANG Shan, JIANG Qianqing, HU Qingsong, JIN Yuxue. Study on classification models for acoustic signals of Litopenaeus vannamei feeding on different kinds of diets[J]. South China Fisheries Science, 2025, 21(2): 27-37. DOI: 10.12131/20240226
Citation: CAO Zhengliang, WANG Zixian, LI Zhaocheng, JIANG Shan, JIANG Qianqing, HU Qingsong, JIN Yuxue. Study on classification models for acoustic signals of Litopenaeus vannamei feeding on different kinds of diets[J]. South China Fisheries Science, 2025, 21(2): 27-37. DOI: 10.12131/20240226

Study on classification models for acoustic signals of Litopenaeus vannamei feeding on different kinds of diets

More Information
  • Received Date: September 24, 2024
  • Revised Date: December 08, 2024
  • Accepted Date: December 24, 2024
  • Available Online: January 19, 2025
  • We explored the classification of acoustic signals of L. vannamei feeding on different kinds of diets with machine learning techniques, so as to recognize the best model by comparing the performance among different classification models, and to provide references for the informatisation of feed management in shrimp aquaculture. We selected and processed the acoustic signals of L. vannamei feeding on nereid, pellet feed and squid. After noise reduction and filtering, two classification ways were employed: 1) Building models including Support Vector Machine (SVM), Random Forest (RF), and k-Nearest Neighbor (KNN) based on audio feature vectors. 2) Building Convolutional Neural Network (CNN) based on Mel-spectrograms. The results indicate that the CNN model, enhanced with Mixup data augmentation and Particle Swarm Optimization (PSO), achieved the highest accuracy of 91.67%. In addition, all four models achieved a recall rate exceeding 90% in identifying pellets, which indicates that the acoustic signals of shrimps feeding on pellets were more distinguishable than those associated with nereid and squid. The CNN model outperformed the traditional models in accuracy, precision, recall, and F1 score, exhibiting greater adaptability for analyzing complex acoustic signals with significant potential for its practical application.

  • [1]
    FAO. The state of world fisheries and aquaculture 2022: towards blue transformation[M]. Rome: FAO, 2022: 44.
    [2]
    EMERENCIANO M G C, ROMBENSO A N, VIEIRA F D N, et al. Intensification of penaeid shrimp culture: an applied review of advances in production systems, nutrition and breeding[J]. Animals, 2022, 12(3): 236. doi: 10.3390/ani12030236
    [3]
    LI D L, DU Z Z, WANG Q, et al. Recent advances in acoustic technology for aquaculture: a review[J]. Rev Aquac, 2024, 16(1): 357-381. doi: 10.1111/raq.12842
    [4]
    LI D L, LIU C, SONG Z Y, et al. Automatic monitoring of relevant behaviors for crustacean production in aquaculture: a review[J]. Animals, 2021, 11(9): 2709. doi: 10.3390/ani11092709
    [5]
    LAMMERS M O, MUNGER L M. From shrimp to whales: biological applications of passive acoustic monitoring on a remote Pacific coral reef[M]//AU W W L, LAMMERS M O. Listening in the ocean. New York: Springer, 2016: 61-81.
    [6]
    BADOR R, BLYTH P, DODD R. Acoustic control improves feeding productivity at shrimp farms[J]. Glob Aquac Advocate, 2013, 16(6): 77-78.
    [7]
    PEIXOTO S, SOARES R, DAVIS D A. An acoustic based approach to evaluate the effect of different diet lengths on feeding behavior of Litopenaeus vannamei[J]. Aquac Eng, 2020, 91: 102114. doi: 10.1016/j.aquaeng.2020.102114
    [8]
    SOARES R, PEIXOTO S, GALKANDA-ARACHCHIGE H S C, et al. Growth performance and acoustic feeding behavior of two size classes of Litopenaeus vannamei fed pelleted and extruded diets[J]. Aquac Int, 2021, 29(1): 399-415. doi: 10.1007/s10499-020-00636-8
    [9]
    JAYASEELAN B, ADIKESAVAN P, CHELLADURAI S. A comparative study on the nutritional value of three polychaete species used in shrimp aquaculture[J]. Sustain Agri Food Environ Res, 2021, 9(4): 526-538.
    [10]
    BRAUER J M E, LEYVA J S, ALVARADO L B, et al. Effect of dietary protein on muscle collagen, collagenase and shear force of farmed white shrimp (Litopenaeus vannamei)[J]. Eur Food Res Technol, 2003, 217: 277-280. doi: 10.1007/s00217-003-0739-7
    [11]
    ANANTHI P, SANTHANAM P, NANDAKUMAR R, et al. Production and utilization of marine copepods as live feed for larval rearing of tiger shrimp Penaeus monodon with special emphasis on astaxanthin enhancement[J]. Ind J Nat Sci, 2011, 11(8): 494-503.
    [12]
    BAEZA-ROJANO E, HACHERO-CRUZADO I, GUERRA-GARCÍA J M. Nutritional analysis of freshwater and marine amphipods from the Strait of Gibraltar and potential aquaculture applications[J]. J Sea Res, 2014, 85: 29-36. doi: 10.1016/j.seares.2013.09.007
    [13]
    VELU C S, MUNUSWAMY N. Composition and nutritional efficacy of adult fairy shrimp Streptocephalus dichotomus as live feed[J]. Food Chem, 2007, 100(4): 1435-1442. doi: 10.1016/j.foodchem.2005.12.017
    [14]
    XUE S Y, DING J K, LI J Q, et al. Effects of live, artificial and mixed feeds on the growth and energy budget of Penaeus vannamei[J]. Aquac Rep, 2021, 19: 100634. doi: 10.1016/j.aqrep.2021.100634
    [15]
    嵇爱华. 南美白对虾养殖过程中提高饵料利用率的措施[J]. 水产养殖, 2012, 33(5): 48. doi: 10.3969/j.issn.1004-2091.2012.05.023
    [16]
    王秀秀. 南美白对虾摄食发声信号的变化规律与特征研究[D]. 上海: 上海海洋大学, 2023: 9-36.
    [17]
    曹正良, 沈梦庭, 李钊丞, 等. 摄食不同粒径颗粒饲料的凡纳滨对虾发声信号特征[J]. 南方水产科学, 2022, 18(6): 26-34. doi: 10.12131/20220080
    [18]
    SÁNCHEZ-GENDRIZ I, PULGAR-PANTALEON E M, HAMILTON S, et al. Python-based acoustic detection of Penaeus vannamei feeding behavior[J]. Aquaculture, 2025, 595(2): 741645.
    [19]
    MA J K, CHEN K Y, SU W, et al. A Litopenaeus vannamei status classification method based on MRANet[C]//OCEANS 2024-Singapore. Singapore: IEEE, 2024: 1-6.
    [20]
    WEI M C, CHEN K Y, LIN Y T, et al. Recognition of behavior state of Penaeus vannamei based on passive acoustic technology[J]. Front Mar Sci, 2022, 9: 973284. doi: 10.3389/fmars.2022.973284
    [21]
    DU Z Z, CUI M, WANG Q, et al. Feeding intensity assessment of aquaculture fish using Mel Spectrogram and deep learning algorithms[J]. Aquac Eng, 2023, 102: 102345. doi: 10.1016/j.aquaeng.2023.102345
    [22]
    DU Z Z, CUI M, XU X B, et al. Harnessing multimodal data fusion to advance accurate identification of fish feeding intensity[J]. Biosyst Eng, 2024, 246: 135-149. doi: 10.1016/j.biosystemseng.2024.08.001
    [23]
    WHITE E L, WHITE P R, BULL J M, et al. More than a whistle: automated detection of marine sound sources with a convolutional neural network[J]. Front Mar Sci, 2022, 9: 879145. doi: 10.3389/fmars.2022.879145
    [24]
    MERCHAN F, GUERRA A, POVEDA H, et al. Bioacoustic classification of antillean manatee vocalization spectrograms using deep convolutional neural networks[J]. Appl Sci, 2020, 10(9): 3286. doi: 10.3390/app10093286
    [25]
    POKKULURI K S, KHANG A, USHA DEVI N S S S N. Enhancing aquaculture efficiency: automated feed management through deep learning[M]//KHANG A. Agriculture and aquaculture applications of biosensors and bioelectronics. Hershey: IGI Global, 2024: 405-415.
    [26]
    宋知用. Matlab 语音信号分析与合成[M]. 北京: 北京航空航天大学出版社, 2017: 184-201.
    [27]
    MARCK A, VORTMAN Y, KOLODNY O, et al. Identification, analysis and characterization of base units of bird vocal communication: the white spectacled bulbul (Pycnonotus xanthopygos) as a case study[J]. Front Behav Neurosci, 2021, 15: 812939.
    [28]
    SMITH D V, SHAHRIAR Md S. A context aware sound classifier applied to prawn feed monitoring and energy disaggregation[J]. Knowledge-Based Syst, 2013, 52: 21-31. doi: 10.1016/j.knosys.2013.05.007
    [29]
    MOUY X, ARCHER S K, DOSSO S, et al. Automatic detection of unidentified fish sounds: a comparison of traditional machine learning with deep learning[J]. Front Mar Sci, 2024, 5: 1439995.
    [30]
    ZHOU Q, SHAN J H, DING W L, et al. Cough recognition based on Mel-spectrogram and convolutional neural network[J]. Front Robot AI, 2021, 8: 580080. doi: 10.3389/frobt.2021.580080
    [31]
    SILVA J F, HAMILTON S, ROCHA J V, et al. Acoustic characterization of feeding activity of Litopenaeus vannamei in captivity[J]. Aquaculture, 2019, 501: 76-81. doi: 10.1016/j.aquaculture.2018.11.013
    [32]
    ZHU B S, WANG Z H, LI Y S, et al. Morphological and structural analysis of Penaeus vannamei mandibles and an attempt at real-time cannibalism monitoring based on passive acoustics[J]. Aquac Rep, 2024, 37: 102199. doi: 10.1016/j.aqrep.2024.102199
    [33]
    LU Z Q, ZHANG B, SUN L, et al. Whale-call classification based on transfer learning and ensemble method[C]//2020 IEEE 20th International Conference on Communication Technology (ICCT). Nanning: IEEE, 2020: 1494-1497.
    [34]
    YANG H H, HUANG Y N, LIU Y Q. Spatial attention deep convolution neural network for call recognition of marine mammal[C]//Proceedings of 2022 International Conference on Autonomous Unmanned Systems (ICAUS 2022). Singapore: Springer, 2022: 2725-2733.
    [35]
    KAWAMURA G, BAGARINAO T U, SENIMAN N S, et al. Comparative morphology and function of feeding appendages in food intake behaviour of the whiteleg shrimp, Litopenaeus vannamei, and the giant freshwater prawn, Macrobrachium rosenbergii[J]. Borneo J Mar Sci Aquac, 2018, 2: 26-39. doi: 10.51200/bjomsa.v2i0.1263
    [36]
    EMERENCIANO M, CUZON G, ARÉVALO M, et al. Effect of short-term fresh food supplementation on reproductive performance, biochemical composition, and fatty acid profile of Litopenaeus vannamei (Boone) reared under biofloc conditions[J]. Aquac Int, 2013, 21(5): 987-1007. doi: 10.1007/s10499-012-9607-4
    [37]
    KANNAN D, THIRUNAVUKKARASU P, JAGADEESAN K, et al. Procedure for maturation and spawning of imported shrimp Litopenaeus vannamei in commercial hatchery, south east coast of India[J]. Fish Aquac J, 2015, 6(4): 146-151.
    [38]
    DAS P, MANDAL S, BHAGABATI S, et al. Important live food organisms and their role in aquaculture[J]. Front Aquac, 2012, 5(4): 69-86.
    [39]
    HAMILTON S, de MOURA G J B, FILHO F C, et al. Size matters: variability in the acoustic parameters during feeding activity of Penaeus vannamei in different size classes[J]. Aquaculture, 2024, 587: 740843. doi: 10.1016/j.aquaculture.2024.740843
  • Related Articles

    [1]MA Qiwei, GUO Liang, LIU Bo, LIU Baosuo, ZHU Kecheng, GUO Huayang, ZHANG Nan, YANG Jingwen, ZHANG Dianchang. Effect of taurine on intestinal microbes and immune function in golden pompano (Trachinotus ovatus)[J]. South China Fisheries Science, 2021, 17(2): 87-96. DOI: 10.12131/20200193
    [2]ZHANG Yaqiu, DENG Yiqin, FENG Juan, MAO Can, HU Jianmei, SU Youlu. Construction of knock-out mutant of vhh in Vibrio harveyi and its related biological characteristics analysis[J]. South China Fisheries Science, 2020, 16(2): 43-53. DOI: 10.12131/20190211
    [3]SONG Ling, ZHU Kecheng, GUO Huayang, JIANG Shigui, ZHANG Dianchang. Characterization and function analysis of Elovl4-like elongase gene in golden pompano (Trachinotus ovatus)[J]. South China Fisheries Science, 2019, 15(3): 76-86. DOI: 10.12131/20180272
    [4]FAN Sigang, ZHAO Chao, WANG Pengfei, YAN Lulu, QIU Lihua. Functional analysis of MSTN promoter in scallop (Chalmys nobilis)[J]. South China Fisheries Science, 2019, 15(1): 63-68. DOI: 10.12131/20180182
    [5]LI Yafang, DU Feiyan, WANG Lianggen, GU Yangguang, NING Jiajia. A biological trait approach to assess ecological functions of macrobenthos at different stand age of rehabilitated Sonneratia apetala mangrove[J]. South China Fisheries Science, 2018, 14(3): 10-19. DOI: 10.3969/j.issn.2095-0780.2018.03.002
    [6]RONG Jing, QIU Chaoying, HU Xiao, YANG Xianqing, LI Laihao. Functional properties of glycosylated myofibrillar proteins from purple back flying squids (Symplectoteuthis oualaniensis)[J]. South China Fisheries Science, 2018, 14(1): 68-76. DOI: 10.3969/j.issn.2095-0780.2018.01.009
    [7]LIU Qian, JIANG Shigui, QIU Lihua, HUANG Jianhua, ZHOU Falin, YANG Qibin, JIANG Song, YANG Lishi. Immune function and expression of Toll9 receptor gene from Penaeus monodon[J]. South China Fisheries Science, 2017, 13(5): 63-71. DOI: 10.3969/j.issn.2095-0780.2017.05.009
    [8]MOU Weihao, ZHOU Yan, GENG Yi, WANG Kaiyu, YU Zehui, LI Yajun, HUANG Xiaoli, OU Yangping, CHEN Defang. Effect on main functional genes expression and replication of Chinese giant salamander ranavirus (CGSRV) by RNA interference[J]. South China Fisheries Science, 2017, 13(4): 80-86. DOI: 10.3969/j.issn.2095-0780.2017.04.010
    [9]MO Baolin, QIN Chuanxin, CHEN Pimao, DIAO Yingjiao, YUAN Huarong, LI Xiaoguo, TONG Fei, FENG Xue. Preliminary analysis of structure and function of Daya Bay ecosystem based on Ecopath model[J]. South China Fisheries Science, 2017, 13(3): 9-19. DOI: 10.3969/j.issn.2095-0780.2017.03.002
    [10]ZHANG Chenjie, ZHANG Yanliang, GAO Quanxin, PENG Shiming, SHI Zhaohong. Effect of low salinity stress on antioxidant function in liver of juvenile Nibea albiflora[J]. South China Fisheries Science, 2015, 11(4): 59-64. DOI: 10.3969/j.issn.2095-0780.2015.04.009
  • Cited by

    Periodical cited type(1)

    1. 孟璐,车金远,黄旭雄,罗土炎,鲍宝龙. 溶藻弧菌RseB基因缺失对凡纳滨对虾致病性的影响. 上海海洋大学学报. 2023(04): 681-689 .

    Other cited types(1)

Catalog

    Article views (105) PDF downloads (34) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return