LI Haohua, LIAO Tao, BAI Chan, QIU Liang, ZU Xiaoyan, LI Hailan, CHEN Liping, XIONG Guangquan, WANG Juguang. Effects of pre-transport density and temperature domestication on simulated transport of juvenile Ictalurus punctatus[J]. South China Fisheries Science, 2024, 20(2): 160-171. DOI: 10.12131/20230154
Citation: LI Haohua, LIAO Tao, BAI Chan, QIU Liang, ZU Xiaoyan, LI Hailan, CHEN Liping, XIONG Guangquan, WANG Juguang. Effects of pre-transport density and temperature domestication on simulated transport of juvenile Ictalurus punctatus[J]. South China Fisheries Science, 2024, 20(2): 160-171. DOI: 10.12131/20230154

Effects of pre-transport density and temperature domestication on simulated transport of juvenile Ictalurus punctatus

More Information
  • Received Date: August 08, 2023
  • Revised Date: September 26, 2023
  • Accepted Date: December 04, 2023
  • Available Online: December 12, 2023
  • To explore the effects of different pre-transport acclimation methods on water quality, biochemical parameters and tissue structure of juvenile Ictalurus punctatus during transportation, and to provide references for transportation of juvenile I. punctatus, we conducted pre-transport intensive acclimation and temperature acclimation. The pre-transport intensive acclimation involved fish-to-water ratios of 1∶2, 1∶3 and 1∶4, and the temperature acclimation was at 14, 19 and 24 ℃. The simulation transport lasted for 18 h, and we investigated the changes in water quality (Ammonia nitrogen, pH), biochemical parameters [Glucose (Glu)、cortisol (Cor), lactate dehydrogenase (LDH), catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA)] as well as organizational structure (Skin and intestine) at different time (0th, 2nd, 6th, 18th hour) and 24-hour recovery after transport. The results show that pre-transport intensive acclimation with a fish-to-water ratio of 1∶4 and a temperature of 19 ℃ had lower ammonia nitrogen levels than the other treatments (P<0.05). Glu, Cor, LDH, CAT, SOD and MDA levels were higher than the other groups, and there was minimal damage to the skin and intestinal structures. In conclusion, pre-transport intensive acclimation with a fish-to-water ratio of 1∶4 and a temperature of 19 ℃ can improve anti-stress capacity effectively during transportation of juvenile I. punctatus.

  • [1]
    WANG J G, XIONG G Q, BAI C, et al. Anesthetic efficacy of two plant phenolics and the physiological response of juvenile Ictalurus punctatus to simulated transport[J]. Aquaculture, 2021, 538: 736566. doi: 10.1016/j.aquaculture.2021.736566
    [2]
    孙学亮, 杨树元, 陈成勋, 等. 捕捞胁迫对半滑舌鳎血液生化指标的影响[J]. 长江大学学报 (自然科学版), 2012, 9(4): 28-32.
    [3]
    BISWAL A, SRIVASTAVA P P, PAL P, et al. A multi-biomarker approach to evaluate the effect of sodium chloride in alleviating the long-term transportation stress of Labeo rohita fingerlings[J]. Aquaculture, 2021, 531: 735979. doi: 10.1016/j.aquaculture.2020.735979
    [4]
    赵忠波, 胡培培, 刘汝鹏, 等. 运输时间和MS-222浓度对翘嘴鲌皮质醇、乳酸及氧气袋内水质的影响[J]. 淡水渔业, 2016, 46(2): 94-98.
    [5]
    林琳. 环境胁迫对豹纹鳃棘鲈 (Plectropomus leopardus) 生长及血液生化指标的影响[D]. 天津: 天津农学院, 2016: 48.
    [6]
    LIU H Y, FU Z Y, YU G, et al. Effect of transport density on greater amberjack (Seriola dumerili) stress, metabolism, antioxidant capacity and immunity[J]. Front Mar Sci, 2022, 9: 1-12.
    [7]
    ZENG P, CHEN T J, SHEN J. Effects of cold acclimation and storage temperature on crucian carp (Carassius auratus gibelio) in a waterless preservation[J]. Fish Physiol Biochem, 2014, 40(3): 973-982. doi: 10.1007/s10695-013-9898-z
    [8]
    ZHANG R, WU G T, WANG X W, et al. Potential benefits of exogenous neurotransmitters in alleviating transport stress in koi carp, Cyprinus carpio[J]. Aquaculture, 2022, 558: 738409. doi: 10.1016/j.aquaculture.2022.738409
    [9]
    朱乾峰, 陈鹏文, 范秀萍, 等. 珍珠龙胆石斑鱼低温有水保活条件优化[J]. 食品工业科技, 2018, 39(22): 276-282.
    [10]
    ADINEH H, NADERI M, HAMIDI K M, et al. Biofloc technology improves growth, innate immune responses, oxidative status, and resistance to acute stress in common carp (Cyprinus carpio) under high stocking density[J]. Fish Shellfish Immun, 2019, 95: 440-448. doi: 10.1016/j.fsi.2019.10.057
    [11]
    SCHELKLE B, DOETJES R, CABLE J. The salt myth revealed: treatment of gyrodactylid infections on ornamental guppies, Poecilia reticulata[J]. Aquaculture, 2011, 311(1): 74-79.
    [12]
    袁仲瑾, 岑剑伟, 李来好, 等. 低温暂养对珍珠龙胆石斑鱼存活、非特异性免疫及抗氧化指标的影响[J]. 南方水产科学, 2022, 18(6): 118-126.
    [13]
    TIE H M, FENG L, JIANG W D, et al. Dietary exogenous supplementation of nucleotides strengthens the disease resistance, antioxidant capacity and immunity in the gill of on-growing grass carp (Ctenopharyngodon idella) following a challenge with Flavobacterium columnare[J]. Aquaculture, 2021, 540: 736729. doi: 10.1016/j.aquaculture.2021.736729
    [14]
    田立立, 万金娟, 孟祥龙, 等. 高pH急性和慢性胁迫对克氏原螯虾非特异性免疫和抗氧化能力的影响[J]. 淡水渔业, 2021, 51(4): 101-107.
    [15]
    张坤, 周结倩, 范秀萍, 等. 禁食暂养对卵形鲳鲹有水保活生理响应的影响[J]. 广东海洋大学学报, 2022, 42(1): 44-49.
    [16]
    BI B L, YUAN Y, ZHAO Y, et al. Effect of crowding stress on growth performance, the antioxidant system and humoral immunity in hybrid sturgeon[J]. Aquac Rep, 2023, 28: 101468. doi: 10.1016/j.aqrep.2023.101468
    [17]
    PAN J Y, CHEN L Q, JI Y Z, et al. A crucial role in osmoregulation against hyperosmotic stress: carbohydrate and inositol metabolism in Nile tilapia (Oreochromis niloticus)[J]. Aquac Rep, 2023, 28: 101433. doi: 10.1016/j.aqrep.2022.101433
    [18]
    刘思迅, 周胜杰, 韩明洋, 等. 密度胁迫对卵形鲳鲹鱼苗运输水质、存活率、免疫酶活力和血清指标的影响[J]. 海洋科学, 2019, 43(4): 70-80.
    [19]
    BISWAL A, SRIVASTAVA P P, KRISHNA G, et al. An integrated biomarker approach for explaining the potency of exogenous glucose on transportation induced stress in Labeo rohita fingerlings[J]. Sci Rep-UK, 2021, 11(1): 5713. doi: 10.1038/s41598-021-85311-5
    [20]
    BRANDÃO F R, DUNCAN W P, FARIAS C F S, et al. Essential oils of Lippia sidoides and Mentha piperita as reducers of stress during the transport of Colossoma macropomum[J]. Aquaculture, 2022, 560: 738515. doi: 10.1016/j.aquaculture.2022.738515
    [21]
    JIANG T, SUN J L, GU Y, et al. Hypoxia alters glucose and lipid metabolisms in golden pompano (Trachinotus blochii)[J]. Aquaculture, 2023, 562: 738747. doi: 10.1016/j.aquaculture.2022.738747
    [22]
    李丹丹, 陈丕茂, 朱爱意, 等. 密度胁迫对黑鲷运输存活率及免疫酶活性的影响[J]. 南方农业学报, 2018, 49(7): 1439-1446.
    [23]
    LUO L, ZHAO Z G, ZHANG R, et al. The effects of temperature changes on the isozyme and Hsp70 levels of the Amur sturgeon, Acipenser schrenckii, at two acclimation temperatures[J]. Aquaculture, 2022, 551: 737743. doi: 10.1016/j.aquaculture.2021.737743
    [24]
    KIM J H, KIM S R, KIM S K, et al. Effects of pH changes on blood physiology, antioxidant responses and IgM of juvenile olive flounder, Paralichthys olivaceus[J]. Aquac Rep, 2021, 21: 100790.
    [25]
    ABDEL-LATIF H M R, CHAKLADER M R, SHUKRY M, et al. A multispecies probiotic modulates growth, digestive enzymes, immunity, hepatic antioxidant activity, and disease resistance of Pangasianodon hypophthalmus fingerlings[J]. Aquaculture, 2023, 563: 738948. doi: 10.1016/j.aquaculture.2022.738948
    [26]
    CHATZIDIMITRIOU E, BISACCIA P, CORRÀ F, et al. Copper/Zinc superoxide dismutase from the crocodile icefish Chionodraco hamatus: antioxidant defense at constant sub-zero temperature[J]. Antioxidants, 2020, 9(4): 325. doi: 10.3390/antiox9040325
    [27]
    SHI A Y, MA H, SHI X L, et al. Effects of microbe-derived antioxidants on growth, digestive and aminotransferase activities, and antioxidant capacities in the hepatopancreas of Eriocheir sinensis under ammonia nitrogen stress[J/OL]. Aquac Fish, 2023 [2023-09-10]. https://www.sciencedirect.com/science/article/pii/S2468550X22001927. DOI: 10.1016/j.aaf.2022.12.002.
    [28]
    ZHANG J, DING Z H, DU W G, et al. Carotenoids act on coloration and increase immunity and antioxidant activity in the novel "Yongzhang Golden turtle" strain of Pelodiscus sinensis[J]. Aquaculture, 2023, 563: 738871. doi: 10.1016/j.aquaculture.2022.738871
    [29]
    HOSEINI S M, YOUSEFI M, HOSEINIFAR S H. Cytokines' gene expression, humoral immune and biochemical responses of common carp (Cyprinus carpio, Linnaeus, 1758) to transportation density and recovery in brackish water[J]. Aquaculture, 2019, 504(15): 13-21.
    [30]
    吕伟华, 马波, 尹家胜, 等. 施氏鲟皮肤的组织学观察[J]. 水产学杂志, 2021, 34(1): 7-11.
    [31]
    FÆSTE C K, TARTOR H, MOEN A, et al. Proteomic profiling of salmon skin mucus for the comparison of sampling methods[J]. J Chromatogr B, 2020, 1138: 121965. doi: 10.1016/j.jchromb.2019.121965
    [32]
    SRIDHAR A, GUARDIOLA F A, KRISHNASAMY S R, et al. Comparative assessment of organic solvent extraction on non-specific immune defences of skin mucus from freshwater fish[J]. Aquac Int, 2022, 30(3): 1121-1138. doi: 10.1007/s10499-022-00847-1
    [33]
    WANG M, LI B, WANG J, et al. Skin transcriptome and physiological analyses reveal the metabolic and immune responses of yellow catfish (Pelteobagrus fulvidraco) to acute hypoxia[J]. Aquaculture, 2021, 546(6): 737277.
    [34]
    吉哲慧, 李清, 蒋明, 等. 杂交鲌 (翘嘴鲌♀×黑尾近红鲌♂) 消化系统形态学和组织学特征研究[J]. 淡水渔业, 2023, 53(1): 12-19.
    [35]
    CORNUAULT J K, BYATT G, PAQUET M E, et al. Zebrafish: a big fish in the study of the gut microbiota[J]. Curr Opin Biotech, 2022, 73: 308-313. doi: 10.1016/j.copbio.2021.09.007
    [36]
    WANG W Z, HUANG J S, ZHANG J D, et al. Effects of hypoxia stress on the intestinal microflora of juvenile of cobia (Rachycentron canadum)[J]. Aquaculture, 2021, 536: 736419. doi: 10.1016/j.aquaculture.2021.736419
    [37]
    WANG Q C, YE W, TAO Y F, et al. Transport stress induces oxidative stress and immune response in juvenile largemouth bass (Micropterus salmoides): analysis of oxidative and immunological parameters and the gut microbiome[J]. Antioxidants, 2023, 12(1): 157. doi: 10.3390/antiox12010157
    [38]
    付东勇, 张艺然, 褚鹏, 等. 低温胁迫对暗纹东方鲀肠道氧化应激、细胞凋亡及肠道微生物组成的影响[J]. 水产学报, 2024, 48(1): 019604.
  • Related Articles

    [1]BAO Yuhang, ZHANG Xinyu, YIN Shangjun, ZHANG Haiqi, XU Jiehao. Effects of Chinese herbal compound on intestinal microbiota and non-specific immune function of Pelodiscus sinensis[J]. South China Fisheries Science, 2023, 19(5): 86-94. DOI: 10.12131/20230069
    [2]LI Junwei, HU Ruiping, CHEN Suwen, GUO Yongjian, ZHU Changbo, LI Ting, XIE Xiaoyong, SU Jiaqi. Effects of low salinity pressure on biological tissue and immunity enzymes activities of Sipunculus nudus[J]. South China Fisheries Science, 2021, 17(4): 41-48. DOI: 10.12131/20210022
    [3]HAN Chunyan, ZHENG Qingmei, CHEN Guidan, LIU Lixia. Effect of ammonia-N stress on non-specific immunity of tilapia (Oreochromis niloticus×O.areus)[J]. South China Fisheries Science, 2014, 10(3): 47-52. DOI: 10.3969/j.issn.2095-0780.2014.03.007
    [4]HUANG Zhong, LIN Heizhao, LI Zhuojia, GUO Zhixun, NIU Jin, HUANG Chunyang. Effects of feeding strategy of dietary Chinese herbs on growth performance, digestive enzymes and non-specific immunity of Litopennaus vannamei[J]. South China Fisheries Science, 2013, 9(5): 37-43. DOI: 10.3969/j.issn.2095-0780.2013.05.007
    [5]JIANG Yiyi, LI Anxing. Establishment of a specific PCR assay to detect Nocardia seriolae[J]. South China Fisheries Science, 2011, 7(6): 47-51. DOI: 10.3969/j.issn.2095-0780.2011.06.008
    [6]QU You-jun, QI Xu-dong, LI Jia-er. Five kinds of isozyme in different tissues of Cheilinus undulatus[J]. South China Fisheries Science, 2009, 5(2): 51-55. DOI: 10.3969/j.issn.1673-2227.2009.02.009
    [7]FU Yun, ZHONG Jinxiang, XIE Xiaoyong, YE Wei, LIN Bihai, CHEN Huichong, ZHANG Hanhua. Genetic diversity and specific AFLP bands in three cultured tilapia strains[J]. South China Fisheries Science, 2008, 4(6): 50-55.
    [8]QI Xudong, QU Youjun. Expression of five kinds of isozyme in different tissues of Trachinotus ovatus[J]. South China Fisheries Science, 2008, 4(3): 38-42.
    [9]XIE Yirong, WU Ruiquan, XIE Jun, YE Fuliang, CHEN Gang, WANG Guangjun, GUAN Shengjun. Effect of dietary vitamin C on growth and non-specific immunity of largemouth bass, Micropterus salmoides[J]. South China Fisheries Science, 2006, 2(3): 40-45.
    [10]HUANG Hai, YIN Shaowu, ZHANG Ben, HE Songming, WU Qianfen, FU Yidan. Studies on four isozymes from five tissues of hybrid Tilapia (Tilapia nilotica♀×T.aurea♂)[J]. South China Fisheries Science, 2006, 2(1): 11-17.

Catalog

    Recommendations
    低盐水体so4 2−/cl− 胁迫下凡纳滨对虾生长、肝胰腺与鳃组织结构及酶活力比较
    贺铮 et al., 南方水产科学, 2025
    基于reca基因的qpcr与raa-lfd检测鳗败血假单胞菌方法的建立与应用
    王一霖 et al., 南方水产科学, 2025
    3组常用鱼类edna宏条形码通用引物对三亚水环境样品的物种检出效果比较
    郭瑶杰 et al., 南方水产科学, 2025
    外伶仃海洋牧场附近海域沉积物重金属分布特征及生态风险评价
    冯雪 et al., 南方水产科学, 2024
    3种病害海带的颜色差异及生化组分分析
    刘晓慧 et al., 水产科学, 2024
    不同产地中华绒螯蟹螯肉矿质元素含量比较及产地判别研究
    唐静 et al., 水产科技情报, 2025
    Computational assessment of mgxh3 (x = al, sc and zr) hydrides materials for hydrogen storage applications
    Bahhar, S., INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024
    Quality assessment of black ginseng materials utilizing chemometrics and modeling inflammation in zebrafish
    Wang, Lulu et al., QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS, 2024
    Property assessment of high-performance concrete containing three types of fibers
    INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS
    Assessing causal associations of bile acids with obesity indicators: a mendelian randomization study
    MEDICINE, 1905
    Powered by
    Article views (651) PDF downloads (38) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return