Citation: | WANG Dou, YOU Jinruo, SHEN Xuanri, LI Yongcheng, XIA Guanghua, HE Yanfu, ZHANG Xueying. Cloning, expression and application of a chitinase gene from Micromonospora aurantiaca[J]. South China Fisheries Science, 2023, 19(5): 143-153. DOI: 10.12131/20230029 |
In this study, a novel carbohydrate 18 family chitinase gene Machi3 was cloned from the genomic DNA of marine microorganism Micromonospra aurantiaca and successfully expressed in Escherichia coli. The optimal reaction temperature and pH for MaChi3 were 55 ℃ and 7.0, respectively. MaChi3 showed good stability below 55 ℃ and at pH of 6−9. The activity of MaChi3 was slightly promoted by Mg2+, Ca2+, Tween 40 and Tween 80. The recombinant chitinase showed hydrolytic activity toward α-chitin, colloidal chitin, shrimp shell powder, chitosan (50%−95% of deacetylation), starch and cellulose, among which the highest activity of 2.24 U mg−1 was observed in colloidal chitin. The results of scanning electron microscopy suggests that the fiber structure of chitin became loose after pretreatment with HCl, so it was more favorable to the hydrolysis of MaChi3. The Km and Vmax values of MaChi3 toward colloidal chitin were 5.93 mg·mL−1 and 8.58 μmol·(min·mg)−1, respectively. In addition, the main product of colloidal chitin hydrolyzed by MaChi3 was N, N-diacetyl chitobiose with a yield of 285.54 mg·g−1. MaChi3 shows good catalytic activity, which is beneficial for its development and application in biotransformation of chitin.
[1] |
TSURKAN M V, VORONKINA A, KHRUNYK Y, et al. Progress in chitin analytics[J]. Carbohydr Polym, 2021, 252: 117204. doi: 10.1016/j.carbpol.2020.117204
|
[2] |
SEDAGHAT F, YOUSEFZADI M, TOISERKANI H, et al. Bioconversion of shrimp waste Penaeus merguiensis using lactic acid fermentation: an alternative procedure for chemical extraction of chitin and chitosan[J]. Int J Biol Macromol, 2017, 104: 883-888. doi: 10.1016/j.ijbiomac.2017.06.099
|
[3] |
JAHROMI S T, BARZKAR N. Marine bacterial chitinase as sources of energy, eco-friendly agent, and industrial biocatalyst[J]. Int J Biol Macromol, 2018, 120: 2147-2154. doi: 10.1016/j.ijbiomac.2018.09.083
|
[4] |
GARCIA-VALDEZ O, CHAMPAGNE P, CUNNINGHAM M F. Graft modification of natural polysaccharides via reversible deactivation radical polymerization[J]. Prog Polym Sci, 2018, 76: 151-173. doi: 10.1016/j.progpolymsci.2017.08.001
|
[5] |
LIAQAT F, ELTEM R. Chitooligosaccharides and their biological activities: a comprehensive review[J]. Carbohydr Polym, 2018, 184: 243-259. doi: 10.1016/j.carbpol.2017.12.067
|
[6] |
刘力睿, 潘杰, 李猛. 微生物几丁质酶的研究进展、应用及展望[J]. 生物资源, 2020, 42(5): 494-504.
|
[7] |
YANG S Q, FU X, YAN Q J, et al. Cloning, expression, purification and application of a novel chitinase from a thermophilic marine bacterium Paenibacillus barengoltzii[J]. Food Chem, 2016, 192: 1041-1048. doi: 10.1016/j.foodchem.2015.07.092
|
[8] |
袁源, 宿玲恰, 张康, 等. 地衣芽孢杆菌几丁质酶在枯草芽孢杆菌中的重组表达及其制备氨基寡糖的研究[J]. 南方水产科学, 2022, 18(2): 39-47. doi: 10.12131/20210297
|
[9] |
DU C, ZHAO X, SONG W, et al. Combined strategies to improve the expression of acidic mammalian chitinase in Pichia pastoris for the production of N, N'-diacetylchitobiose[J]. Biochem Eng J, 2021, 167: 107907. doi: 10.1016/j.bej.2020.107907
|
[10] |
LIU S J, SHAO S J, LI L L, et al. Substrate-binding specificity of chitinase and chitosanase as revealed by active-site architecture analysis[J]. Carbohydr Res, 2015, 418: 50-56. doi: 10.1016/j.carres.2015.10.002
|
[11] |
SAITO A, FUJII T, SHINYA T, et al. The msiK gene, encoding the ATP-hydrolysing component of N,N'-diacetylchitobiose ABC transporters, is essential for induction of chitinase production in Streptomyces coelicolor A3 (2)[J]. Microbiology, 2008, 154(11): 3358-3365. doi: 10.1099/mic.0.2008/019612-0
|
[12] |
PELLIS A, FERRARIO V, CESPUGLI M, et al. Fully renewable polyesters via polycondensation catalyzed by Thermobifida cellulosilytica cutinase 1: an integrated approach[J]. Green Chem, 2017, 19(2): 490-502. doi: 10.1039/C6GC02142E
|
[13] |
VISOOTSAT A, NAKAMURA A, VIGNON P, et al. Single-molecule imaging analysis reveals the mechanism of a high-catalytic-activity mutant of chitinase A from Serratia marcescens[J]. J Biol Chem, 2020, 295(7): 1915-1925. doi: 10.1074/jbc.RA119.012078
|
[14] |
OYELEYE A, NORMI Y M. Chitinase: diversity, limitations, and trends in engineering for suitable applications[J]. Biosci Rep, 2018, 38(4): BSR2018032300. doi: 10.1042/BSR20180323
|
[15] |
BOUACEM K, LARIBI-HABCHI H, MECHRI S, et al. Biochemical characterization of a novel thermostable chitinase from Hydrogenophilus hirschii strain KB-DZ44[J]. Int J Biol Macromol, 2018, 106: 338-350. doi: 10.1016/j.ijbiomac.2017.08.026
|
[16] |
KROLICKA M, HINZ S W A, KOETSIER M J, et al. Chitinase Chi1 from Myceliophthora thermophila C1, a thermostable enzyme for chitin and chitosan depolymerization[J]. J Agric Food Chem, 2018, 66(7): 1658-1669. doi: 10.1021/acs.jafc.7b04032
|
[17] |
GASMI M, KITOUNI M, CARRO L, et al. Chitinolytic actinobacteria isolated from an Algerian semi-arid soil: development of an antifungal chitinase-dependent assay and GH18 chitinase gene identification[J]. Ann Microbiol, 2019, 69: 395-405. doi: 10.1007/s13213-018-1426-z
|
[18] |
KUMAR M, BRAR A, VIVEKANAND V, et al. Bioconversion of chitin to bioactive chitooligosaccharides: amelioration and coastal pollution reduction by microbial resources[J]. Mar Biotechnol, 2018, 20: 269-281. doi: 10.1007/s10126-018-9812-x
|
[19] |
LIANG S, SUN Y S, DAI X L. A review of the preparation, analysis and biological functions of chitooligosaccharide[J]. Int J Mol Sci, 2018, 19(8): 2197. doi: 10.3390/ijms19082197
|
[20] |
MALIK A. Purification and properties of plant chitinases: a review[J]. J Food Biochem, 2019, 43(3): e12762. doi: 10.1111/jfbc.12762
|
[21] |
GAO L, SUN J N, SECUNDO F, et al. Cloning, characterization and substrate degradation mode of a novel chitinase from Streptomyces albolongus ATCC 27414[J]. Food Chem, 2018, 261: 329-336. doi: 10.1016/j.foodchem.2018.04.068
|
[22] |
LV C Y, GU T Y, MA R, et al. Biochemical characterization of a GH19 chitinase from Streptomyces alfalfae and its applications in crystalline chitin conversion and biocontrol[J]. Int J Biol Macromol, 2021, 167: 193-201. doi: 10.1016/j.ijbiomac.2020.11.178
|
[23] |
BRZEZINSKA M S, JANKIEWICZ U, KALWASIŃSKA A, et al. Characterization of chitinase from Streptomyces luridiscabiei U05 and its antagonist potential against fungal plant pathogens[J]. J Phytopathol, 2019, 167(7/8): 404-412.
|
[24] |
PAN M Y, LI J H, LYU X Q, et al. Molecular engineering of chitinase from Bacillus sp. DAU101 for enzymatic production of chitooligosaccharides[J]. Enzyme Microb Technol, 2019, 124: 54-62. doi: 10.1016/j.enzmictec.2019.01.012
|
[25] |
GARCÍA-FRAGA B, da SILVA A F, LÓPEZ-SEIJAS J, et al. A novel family 19 chitinase from the marine-derived Pseudoalteromonas tunicata CCUG 44952T: heterologous expression, characterization and antifungal activity[J]. Biochem Eng J, 2015, 93: 84-93. doi: 10.1016/j.bej.2014.09.014
|
[26] |
BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72(1/2): 248-254.
|
[27] |
ASIF T, JAVED U, ZAFAR S B, et al. Bioconversion of colloidal chitin using novel chitinase from Glutamicibacter uratoxydans exhibiting anti-fungal potential by hydrolyzing chitin within fungal cell wall[J]. Waste Biomass Valor, 2020, 11: 4129-4143. doi: 10.1007/s12649-019-00746-2
|
[28] |
van AALTEN D M, KOMANDER D, SYNSTAD B, et al. Structural insights into the catalytic mechanism of a family 18 exo-chitinase[J]. Proc Natl Acad Sci, 2001, 98(16): 8979-8984. doi: 10.1073/pnas.151103798
|
[29] |
SYNSTAD B, GÅSEIDNES S, van AALTEN D M, et al. Mutational and computational analysis of the role of conserved residues in the active site of a family 18 chitinase[J]. Eur J Biochem, 2004, 271(2): 253-262. doi: 10.1046/j.1432-1033.2003.03923.x
|
[30] |
VAAJE-KOLSTAD G, BUNÆS A C, MATHIESEN G, et al. The chitinolytic system of Lactococcus lactis ssp. lactis comprises a nonprocessive chitinase and a chitin-binding protein that promotes the degradation of α-and β-chitin[J]. FEBS J, 2009, 276(8): 2402-2415. doi: 10.1111/j.1742-4658.2009.06972.x
|
[31] |
LACOMBE-HARVEY M È, BRZEZINSKI R, BEAULIEU C. Chitinolytic functions in actinobacteria: ecology, enzymes, and evolution[J]. Appl Microbiol Biotechnol, 2018, 102: 7219-7230. doi: 10.1007/s00253-018-9149-4
|
[32] |
YANG Y L, LI J, LIU X W, et al. Improving extracellular production of Serratia marcescens lytic polysaccharide monooxygenase CBP21 and Aeromonas veronii B565 chitinase Chi92 in Escherichia coli and their synergism[J]. AMB Expr, 2017, 7: 170. doi: 10.1186/s13568-017-0470-6
|
[33] |
WANG Y J, JIANG W X, ZHANG Y S, et al. Structural insight into chitin degradation and thermostability of a novel endochitinase from the glycoside hydrolase family 18[J]. Front Microbiol, 2019, 10: 2457. doi: 10.3389/fmicb.2019.02457
|
[34] |
BHUVANACHANDRA B, PODILE A R. A transglycosylating chitinase from Chitiniphilus shinanonensis (CsChiL) hydrolyzes chitin in a processive manner[J]. Int J Biol Macromol, 2020, 145: 1-10. doi: 10.1016/j.ijbiomac.2019.12.134
|
[35] |
HUO F M, RAN C, YANG Y L, et al. Gene cloning, expression and characterization of an exo-chitinase with high β-glucanase activity from Aeromonas veronii B565[J]. Acta Microbiologica Sinica, 2016, 56(5): 787-803.
|
[36] |
SHARMA V, SALWAN R, SHARMA P N, et al. Molecular cloning and characterization of ech46 endochitinase from Trichoderma harzianum[J]. Int J Biol Macromol, 2016, 92: 615-624. doi: 10.1016/j.ijbiomac.2016.07.067
|
[37] |
FARAG A M, ABD-ELNABEY H M, IBRAHIM H A H, et al. Purification, characterization and antimicrobial activity of chitinase from marine-derived Aspergillus terreus[J]. Egypt J Aquat Res, 2016, 42(2): 185-192. doi: 10.1016/j.ejar.2016.04.004
|
[38] |
WANG X H, CHI N Y, BAI F W, et al. Characterization of a cold-adapted and salt-tolerant exo-chitinase (ChiC) from Pseudoalteromonas sp. DL-6[J]. Extremophiles, 2016, 20: 167-176. doi: 10.1007/s00792-016-0810-5
|
[39] |
CHEN J P, AN Y D F, KUMAR A, et al. Improvement of chitinase Pachi with nematicidal activities by random mutagenesis[J]. Int J Biol Macromol, 2017, 96: 171-176. doi: 10.1016/j.ijbiomac.2016.11.093
|
[40] |
GUO X X, XU P, ZONG M H, et al. Purification and characterization of alkaline chitinase from Paenibacillus pasadenensis CS0611[J]. Chin J Catal, 2017, 38(4): 665-672. doi: 10.1016/S1872-2067(17)62787-6
|
[41] |
LE B, YANG S H. Characterization of a chitinase from Salinivibrio sp. BAO-1801 as an antifungal activity and a biocatalyst for producing chitobiose[J]. J Basic Microbiol, 2018, 58(10): 848-856. doi: 10.1002/jobm.201800256
|
[42] |
DENG J J, SHI D, MAO H H, et al. Heterologous expression and characterization of an antifungal chitinase (Chit46) from Trichoderma harzianum GIM 3.442 and its application in colloidal chitin conversion[J]. Int J Biol Macromol, 2019, 134: 113-121. doi: 10.1016/j.ijbiomac.2019.04.177
|
1. |
吴海星,黄安妮,高霞,申铉日,夏光华,张雪莹. Lysinibacillus sphaericus胶原酶的异源表达、鉴定及其在抗氧化活性肽制备中的应用. 食品工业科技. 2025(06): 206-216 .
![]() |