Citation: | WANG Weisong, TANG Wei, GONG Yihe, WANG Xuefang, LI Yuwei. Modeling habitat of skipjack tuna of free swimming school in Western and Central Pacific Ocean based on MaxEnt model[J]. South China Fisheries Science, 2023, 19(5): 11-21. DOI: 10.12131/20230011 |
Due to the negative effects of extensive use of drifting artificial fish aggregating devices (FADs) on tuna stocks, tuna purse seine fishing has become a development trend towards catching free swimming school, so it is necessary to specifically study the habitat use of free swimming school of skipjack tuna (Katsuwonus pelamis). In this study, we used monthly tuna fishery data from the Western and Central Pacific Fisheries Commission (WCPFC) from 2016 to 2020, different layers of water temperature (SST, Temp200), sea surface salinity (SSS), dissolved oxygen concentration (DO0, DO50, DO200), east-west current velocity (EV), north-south current velocity (NV), mixed layer depth (MLD), chlorophyll a concentration (CHL0, CHL50, CHL100, CHL200), and a total of 13 environmental variables by Maximum Entropy (MaxEnt) model to simulate the habitat distribution of the free swimming school and their monthly variation patterns. The results show that the AUC and sensitivity values of both the test and training set of the model were greater than 0.90, and the true skill statistics values were greater than 0.80, indicating that the model has strong predictive ability and can be used for the habitat suitability modeling of skipjack tuna. SST and DO200 were the key factors affecting the habitat preference of free swimming school, with the optimal ranges of 30−31 ℃ and 114−153 mmol·m−3, respectively. During the survey period, the highly suitable habitat for free swimming school was mainly near the waters of Papua New Guinea and Solomon Islands, with a large variation in the range extending eastward in different periods, and the difference in longitude reached 6°. The results provide references for the prediction of the central fishing ground of free swimming school of skipjack tuna by Chinese tuna purse seine fleet.
[1] |
Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture, 2021[R]. Rome: FAO, 2021: 127-148.
|
[2] |
TRYGONIS V, GEORGAKARAKOS S, DAGORN L, et al. Spatiotemporal distribution of fish schools around drifting fish aggregating devices[J]. Fish Res, 2016, 177: 39-49. doi: 10.1016/j.fishres.2016.01.013
|
[3] |
HALLIER J P, GAERTNER D. Drifting fish aggregation devices could act as an ecological trap for tropical tuna species[J]. Mar Ecol Prog Ser, 2008, 353: 255-264. doi: 10.3354/meps07180
|
[4] |
TSENG C T, SUN C L, YEH S Z, et al. Spatio-temporal distributions of tuna species and potential habitats in the Western and Central Pacific Ocean derived from multi-satellite data[J]. Int J Remote Sens, 2010, 31(17/18): 4543-4558.
|
[5] |
MUGO R, SAITOH S E I I, NIHIRA A, et al. Habitat characteristics of skipjack tuna (Katsuwonus pelamis) in the western North Pacific: a remote sensing perspective[J]. Fish Oceanogr, 2010, 19(5): 382-396. doi: 10.1111/j.1365-2419.2010.00552.x
|
[6] |
DUERI S, BOPP L, MAURY O. Projecting the impacts of climate change on skipjack tuna abundance and spatial distribution[J]. Glob Chang Biol, 2014, 20(3): 742-753. doi: 10.1111/gcb.12460
|
[7] |
ADAM M S, SIBERT J R. Population dynamics and movements of skipjack tuna (Katsuwonus pelamis) in the Maldivian fishery: analysis of tagging data from an advection-diffusion-reaction model[J]. Aquat Living Resour, 2002, 15(1): 13-23. doi: 10.1016/S0990-7440(02)01155-5
|
[8] |
SALAZAR J E, BENAVIDES I F, CABRERA C V P, et al. Generalized additive models with delayed effects and spatial autocorrelation patterns to improve the spatiotemporal prediction of the skipjack (Katsuwonus pelamis) distribution in the Colombian Pacific Ocean[J]. Reg Stud Mar Sci, 2021, 45: 101-115.
|
[9] |
MUGO R, SAITOH S I. Ensemble modelling of skipjack tuna (Katsuwonus pelamis) habitats in the western north Pacific using satellite remotely sensed data: a comparative analysis using machine-learning models[J]. Remote Sens, 2020, 12(16): 2591-2605. doi: 10.3390/rs12162591
|
[10] |
ALABIA I D, SAITOH S I, MUGO R, et al. Seasonal potential fishing ground prediction of neon flying squid (Ommastrephes pastrami) in the western and central North Pacific[J]. Fish Oceanogr, 2015, 24(2): 190-203. doi: 10.1111/fog.12102
|
[11] |
CHEN B Y, HONG Z, HAO X Q, et al. Environmental models for predicting habitat of the Indo-Pacific humpback dolphins in Fujian, China[J]. Aquat Conserv, 2020, 30(4): 787-793. doi: 10.1002/aqc.3279
|
[12] |
YOSHINAGA D H, FRANK H A. Histamine-producing bacteria in decomposing skipjack tuna (Katsuwonus pelamis)[J]. Appl Environ Microb, 1982, 44(2): 447-452. doi: 10.1128/aem.44.2.447-452.1982
|
[13] |
DAI L, WANG X, STAPLES K W, et al. Factors influencing successful fishing of tuna free-swimming schools in the equatorial western Pacific Ocean[J]. Turk J Fish Aquat Sc, 2019, 20(5): 341-350.
|
[14] |
SIBERT J, SENINA I, LEHODEY P, et al. Shifting from marine reserves to maritime zoning for conservation of Pacific bigeye tuna (Thunnus obesus)[J]. P Natl Acad Sci USA, 2012, 109(44): 18221-18225. doi: 10.1073/pnas.1209468109
|
[15] |
PRINCE E D, GOODYEAR C P. Hypoxia-based habitat compression of tropical pelagic fishes[J]. Fish Oceanogr, 2006, 15(6): 451-464. doi: 10.1111/j.1365-2419.2005.00393.x
|
[16] |
LEHODEY P, BERTIGNAC M, HAMPTON J, et al. El Niño Southern Oscillation and tuna in the western Pacific[J]. Nature, 1997, 389(6652): 715-718. doi: 10.1038/39575
|
[17] |
DI Y U, CHANG F C, BIN W, et al. Characterization of acid-and pepsin-soluble collagens from spines and skulls of skipjack tuna (Katsuwonus pelamis)[J]. Chin J Nat Medicines, 2014, 12(9): 712-720. doi: 10.1016/S1875-5364(14)60110-2
|
[18] |
ROGER C. The plankton of the tropical western Indian Ocean as a biomass indirectly supporting surface tunas (yellowfin, Thunnus albacares and skipjack, Katsuwonus pelamis)[J]. Environ Biol Fish, 1994, 39: 161-172. doi: 10.1007/BF00004934
|
[19] |
LEROY B, ITANO D G, USU T, et al. Vertical behavior and the observation of FAD effects on tropical tuna in the warm-pool of the western Pacific Ocean[M]//NIELSEN J L, ARRIZABALAGA H, FRAGOSO N, et al. Tagging and tracking of marine animals with electronic devices. Reviews: methods and technologies in fish biology and fisheries, vol 9. Dordrecht: Springer, 2009: 161-179.
|
[20] |
KIYOFUJI H, AOKI Y, KINOSHITA J, et al. Northward migration dynamics of skipjack tuna (Katsuwonus pelamis) associated with the lower thermal limit in the western Pacific Ocean[J]. Prog Oceanogr, 2019, 175: 55-67. doi: 10.1016/j.pocean.2019.03.006
|
[21] |
SCHAEFER K M. Vertical movement pattern of skipjack tuna (Katsuwonus pelamis) in the eastern equatorial Pacific Ocean, as revealed with archival tags[J]. Fish Bull, 2007, 105: 379-389.
|
[22] |
杨胜龙, 周甦芳, 周为峰, 等. 基于Argo数据的中西太平洋鲣渔获量与水温、表层盐度关系的初步研究[J]. 大连水产学院学报, 2010, 25(1): 34-40.
|
[23] |
GARCIA C B, GARCIA J, LOPEZ MARTIN M M, et al. Collinearity: revisiting the variance inflation factor in ridge regression[J]. J Appl Stat, 2015, 42(3): 648-661. doi: 10.1080/02664763.2014.980789
|
[24] |
IGARASHI H, SAITOH S I, ISHIKAWA Y, et al. Identifying potential habitat distribution of the neon flying squid (Ommastrephes bartramii) off the eastern coast of Japan in winter[J]. Fish Oceanogr, 2018, 27(1): 16-27. doi: 10.1111/fog.12230
|
[25] |
赵静, 柳晓雪, 吴建辉, 等. 零膨胀模型在珍稀鱼类资源时空分布预测中的应用: 以长江口刀鲚为例[J]. 生态学杂志, 2020, 39(9): 3155-3163. doi: 10.13292/j.1000-4890.202009.028
|
[26] |
Sagarese S R, Frisk M G, Cerrato R M, et al. Application of generalized additive models to examine ontogenetic and seasonal distributions of spiny dogfish (Squalus acanthias) in the Northeast (US) shelf large marine ecosystem[J]. Can J Fish Aquat Sci, 2014, 71(6): 847-877. doi: 10.1139/cjfas-2013-0342
|
[27] |
马金, 黄金玲, 陈锦辉, 等. 基于GAM的长江口鱼类资源时空分布及影响因素[J]. 水产学报, 2020, 44(6): 936-946.
|
[28] |
PHILLIPS S J, ANDERSON R P, SCHAPIRE R E. Maximum entropy modeling of species geographic distributions[J]. Ecol Model, 2006, 190(3/4): 231-259.
|
[29] |
MANEL S, WILLIAMS H C, ORMEROD S J. Evaluating presence absence models in ecology: the need to account for prevalence[J]. J Appl Ecol, 2001, 38(5): 921-931. doi: 10.1046/j.1365-2664.2001.00647.x
|
[30] |
ZU T P, KANG R, WEN M L, et al. Belief reliability distribution based on maximum entropy principle[J]. IEEE Access, 2017, 6: 1577-1582.
|
[31] |
ALLOUCHE O, TSOAR A, KADMON R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS)[J]. J Appl Ecol, 2006, 43(6): 1223-1232. doi: 10.1111/j.1365-2664.2006.01214.x
|
[32] |
MEYSMAN F J R, BRUERS S. Ecosystem functioning and maximum entropy production: a quantitative test of hypotheses[J]. Philosophical Transactions of the Royal Society B:Biol Sci, 2010, 365(1545): 1405-1416. doi: 10.1098/rstb.2009.0300
|
[33] |
SHCHEGLOVITOVA M, ANDERSON R P. Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes[J]. Ecol Model, 2013, 269: 9-17. doi: 10.1016/j.ecolmodel.2013.08.011
|
[34] |
ELITH J H, GRAHAM C P, ANDERSON R, et al. Novel methods improve prediction of species distributions from occurrence data[J]. Ecography, 2006, 29(2): 129-151. doi: 10.1111/j.2006.0906-7590.04596.x
|
[35] |
ZU T, KANG R, WEN M, et al. Belief reliability distribution based on maximum entropy principle[J]. IEEE Access, 2017, 6: 1577-1582.
|
[36] |
WEST A M, KUMAR S, BROWN C S, et al. Field validation of an invasive species MaxEnt model[J]. Ecol Inform, 2016, 36: 126-134. doi: 10.1016/j.ecoinf.2016.11.001
|
[37] |
KUMAR P. Assessment of impact of climate change on Rhododendrons in Sikkim Himalayas using Maxent modelling: limitations and challenges[J]. Biodivers Conserv, 2012, 21(5): 1251-1266. doi: 10.1007/s10531-012-0279-1
|
[38] |
MORENO R, ZAMORA R, MOLINA J R, et al. Predictive modeling of microhabitats for endemic birds in South Chilean temperate forests using Maximum Entropy (MaxEnt)[J]. Ecol Inform, 2011, 6(6): 364-370. doi: 10.1016/j.ecoinf.2011.07.003
|
[39] |
LIU S J, YANG J. Modeling spatial patterns of forest fire in Heilongjiang Province using Generalized Linear Model and Maximum Entropy Model[J]. Chin J Ecol, 2013, 32(6): 1620-1628.
|
[40] |
梁阳阳, 陈康, 崔凯, 等. 气候变化情景下须鳗鰕虎鱼在中国的潜在地理分布[J]. 大连海洋大学学报, 2022, 37(5): 739-746.
|
[41] |
NURSAN M, YONVITNER Y, AGUS S B. Distribution of skipjack (Katsuwonus pelamis) fishing areas using purse seine fishing equipment in WPP 573[J]. J Trop Fish Manag, 2022, 6(1): 11-20.
|
[42] |
ZHANG K L, YAO L J, MENG J S, et al. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change[J]. Sci Total Environ, 2018, 634: 1326-1334. doi: 10.1016/j.scitotenv.2018.04.112
|
[43] |
陈世泳. 中西太平洋正鲣渔场推移与表明水温变化之关系[D]. 基隆: 台湾海洋大学, 2006: 24-26.
|
[44] |
ZHOU C, HU Y Y, CAO J, et al. Comparison of nominal and standardized catch per unit effort data in quantifying habitat suitability of skipjack tuna in the equatorial Pacific Ocean[J]. Acta Oceanol Sin, 2022, 41(3): 1-10. doi: 10.1007/s13131-021-1922-z
|
[45] |
PICAUT J, IOUALALEN M, MENKÈS C, et al. Mechanism of the zonal displacements of the Pacific warm pool: implications for ENSO[J]. Science, 1996, 274(5292): 1486-1489. doi: 10.1126/science.274.5292.1486
|
[46] |
ELY B, VIÑAS J, ALVARADO BREMER J R, et al. Consequences of the historical demography on the global population structure of two highly migratory cosmopolitan marine fishes: the yellowfin tuna (Thunnus albacares) and the skipjack tuna (Katsuwonus pelamis)[J]. BMC Evol Biol, 2005, 5(1): 1-9. doi: 10.1186/1471-2148-5-1
|
[47] |
LEHODEY P. The pelagic ecosystem of the tropical Pacific Ocean: dynamic spatial modelling and biological consequences of ENSO[J]. Prog Oceanogr, 2001, 49(1/2/3/4): 439-468.
|
[48] |
BOYCE D G, TITTENSOR D P, WORM B. Effects of temperature on global patterns of tuna and billfish richness[J]. Mar Ecol Prog Ser, 2008, 355: 267-276. doi: 10.3354/meps07237
|
[49] |
MATHIEU-COSTELLO O, BRILL R W, HOCHACHKA P W. Structural basis for oxygen delivery: muscle capillaries and manifolds in tuna red muscle[J]. Comp Biochem Physiol A, 1996, 113(1): 25-31. doi: 10.1016/0300-9629(95)02059-4
|
[50] |
BUSHNELL P G, BRILL R W. Responses of swimming skipjack (Katsuwonus pelamis) and yellowfin (Thunnus albacares) tunas to acute hypoxia, and a model of their cardiorespiratory function[J]. Physiol Zool, 1991, 64(3): 787-811. doi: 10.1086/physzool.64.3.30158207
|
[51] |
SCHAEFER K M, FULLER D W. Vertical movement pattern of skipjack tuna (Katsuwonus pelamis) in the eastern equatorial Pacific Ocean, as revealed with archival tags[J]. Fish Bull, 2007, 105: 379-989.
|
[52] |
ZAINUDDIN M, KIYOFUJI H, SAITOH K, et al. Using multi-sensor satellite remote sensing and catch data to detect ocean hot spots for albacore (Thunnus alalunga) in the northwestern North Pacific[J]. Deep-Sea Res II, 2006, 53(3/4): 419-431. doi: 10.1016/j.dsr2.2006.01.007
|
[53] |
BERNAL D, BRILL R W, DICKSON K A, et al. Sharing the water column: physiological mechanisms underlying species-specific habitat use in tunas[J]. Rev Fish Biol Fisher, 2017, 27(4): 843-880. doi: 10.1007/s11160-017-9497-7
|
[54] |
DEARY A L, MORET-FERGUSON S, ENGELS M, et al. Influence of central Pacific oceanographic conditions on the potential vertical habitat of four tropical tuna species1[J]. Pac Sci, 2015, 69(4): 461-475. doi: 10.2984/69.4.3
|
[55] |
ANDRADE H A. The relationship between the skipjack tuna (Katsuwonus pelamis) fishery and seasonal temperature variability in the south western Atlantic[J]. Fish Oceanogr, 2003, 12(1): 10-18. doi: 10.1046/j.1365-2419.2003.00220.x
|
[56] |
LLOPIZ J K, HOBDAY A J. A global comparative analysis of the feeding dynamics and environmental conditions of larval tunas, mackerels, and billfishes[J]. Deep-Sea Res II, 2015, 113: 113-124. doi: 10.1016/j.dsr2.2014.05.014
|
1. | 张鸿霖,马有成,宋厚成,张健,曾志坚. 基于结构方程模型研究环境因子对毛里塔尼亚双拖鲣CPUE的影响. 中国水产科学. 2024(04): 465-475 . | |
2. | 吕莉欣,赵恒权,钟俊生,王晓东,叶旭昌,刘志良. 菲律宾海夏季仔稚鱼表层分布及其与环境因子的关系. 上海海洋大学学报. 2024(04): 946-959 . |