WANG Weisong, TANG Wei, GONG Yihe, WANG Xuefang, LI Yuwei. Modeling habitat of skipjack tuna of free swimming school in Western and Central Pacific Ocean based on MaxEnt model[J]. South China Fisheries Science, 2023, 19(5): 11-21. DOI: 10.12131/20230011
Citation: WANG Weisong, TANG Wei, GONG Yihe, WANG Xuefang, LI Yuwei. Modeling habitat of skipjack tuna of free swimming school in Western and Central Pacific Ocean based on MaxEnt model[J]. South China Fisheries Science, 2023, 19(5): 11-21. DOI: 10.12131/20230011

Modeling habitat of skipjack tuna of free swimming school in Western and Central Pacific Ocean based on MaxEnt model

More Information
  • Received Date: February 04, 2023
  • Revised Date: May 08, 2023
  • Accepted Date: May 24, 2023
  • Available Online: June 04, 2023
  • Due to the negative effects of extensive use of drifting artificial fish aggregating devices (FADs) on tuna stocks, tuna purse seine fishing has become a development trend towards catching free swimming school, so it is necessary to specifically study the habitat use of free swimming school of skipjack tuna (Katsuwonus pelamis). In this study, we used monthly tuna fishery data from the Western and Central Pacific Fisheries Commission (WCPFC) from 2016 to 2020, different layers of water temperature (SST, Temp200), sea surface salinity (SSS), dissolved oxygen concentration (DO0, DO50, DO200), east-west current velocity (EV), north-south current velocity (NV), mixed layer depth (MLD), chlorophyll a concentration (CHL0, CHL50, CHL100, CHL200), and a total of 13 environmental variables by Maximum Entropy (MaxEnt) model to simulate the habitat distribution of the free swimming school and their monthly variation patterns. The results show that the AUC and sensitivity values of both the test and training set of the model were greater than 0.90, and the true skill statistics values were greater than 0.80, indicating that the model has strong predictive ability and can be used for the habitat suitability modeling of skipjack tuna. SST and DO200 were the key factors affecting the habitat preference of free swimming school, with the optimal ranges of 30−31  ℃ and 114−153 mmol·m−3, respectively. During the survey period, the highly suitable habitat for free swimming school was mainly near the waters of Papua New Guinea and Solomon Islands, with a large variation in the range extending eastward in different periods, and the difference in longitude reached 6°. The results provide references for the prediction of the central fishing ground of free swimming school of skipjack tuna by Chinese tuna purse seine fleet.

  • [1]
    Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture, 2021[R]. Rome: FAO, 2021: 127-148.
    [2]
    TRYGONIS V, GEORGAKARAKOS S, DAGORN L, et al. Spatiotemporal distribution of fish schools around drifting fish aggregating devices[J]. Fish Res, 2016, 177: 39-49. doi: 10.1016/j.fishres.2016.01.013
    [3]
    HALLIER J P, GAERTNER D. Drifting fish aggregation devices could act as an ecological trap for tropical tuna species[J]. Mar Ecol Prog Ser, 2008, 353: 255-264. doi: 10.3354/meps07180
    [4]
    TSENG C T, SUN C L, YEH S Z, et al. Spatio-temporal distributions of tuna species and potential habitats in the Western and Central Pacific Ocean derived from multi-satellite data[J]. Int J Remote Sens, 2010, 31(17/18): 4543-4558.
    [5]
    MUGO R, SAITOH S E I I, NIHIRA A, et al. Habitat characteristics of skipjack tuna (Katsuwonus pelamis) in the western North Pacific: a remote sensing perspective[J]. Fish Oceanogr, 2010, 19(5): 382-396. doi: 10.1111/j.1365-2419.2010.00552.x
    [6]
    DUERI S, BOPP L, MAURY O. Projecting the impacts of climate change on skipjack tuna abundance and spatial distribution[J]. Glob Chang Biol, 2014, 20(3): 742-753. doi: 10.1111/gcb.12460
    [7]
    ADAM M S, SIBERT J R. Population dynamics and movements of skipjack tuna (Katsuwonus pelamis) in the Maldivian fishery: analysis of tagging data from an advection-diffusion-reaction model[J]. Aquat Living Resour, 2002, 15(1): 13-23. doi: 10.1016/S0990-7440(02)01155-5
    [8]
    SALAZAR J E, BENAVIDES I F, CABRERA C V P, et al. Generalized additive models with delayed effects and spatial autocorrelation patterns to improve the spatiotemporal prediction of the skipjack (Katsuwonus pelamis) distribution in the Colombian Pacific Ocean[J]. Reg Stud Mar Sci, 2021, 45: 101-115.
    [9]
    MUGO R, SAITOH S I. Ensemble modelling of skipjack tuna (Katsuwonus pelamis) habitats in the western north Pacific using satellite remotely sensed data: a comparative analysis using machine-learning models[J]. Remote Sens, 2020, 12(16): 2591-2605. doi: 10.3390/rs12162591
    [10]
    ALABIA I D, SAITOH S I, MUGO R, et al. Seasonal potential fishing ground prediction of neon flying squid (Ommastrephes pastrami) in the western and central North Pacific[J]. Fish Oceanogr, 2015, 24(2): 190-203. doi: 10.1111/fog.12102
    [11]
    CHEN B Y, HONG Z, HAO X Q, et al. Environmental models for predicting habitat of the Indo-Pacific humpback dolphins in Fujian, China[J]. Aquat Conserv, 2020, 30(4): 787-793. doi: 10.1002/aqc.3279
    [12]
    YOSHINAGA D H, FRANK H A. Histamine-producing bacteria in decomposing skipjack tuna (Katsuwonus pelamis)[J]. Appl Environ Microb, 1982, 44(2): 447-452. doi: 10.1128/aem.44.2.447-452.1982
    [13]
    DAI L, WANG X, STAPLES K W, et al. Factors influencing successful fishing of tuna free-swimming schools in the equatorial western Pacific Ocean[J]. Turk J Fish Aquat Sc, 2019, 20(5): 341-350.
    [14]
    SIBERT J, SENINA I, LEHODEY P, et al. Shifting from marine reserves to maritime zoning for conservation of Pacific bigeye tuna (Thunnus obesus)[J]. P Natl Acad Sci USA, 2012, 109(44): 18221-18225. doi: 10.1073/pnas.1209468109
    [15]
    PRINCE E D, GOODYEAR C P. Hypoxia-based habitat compression of tropical pelagic fishes[J]. Fish Oceanogr, 2006, 15(6): 451-464. doi: 10.1111/j.1365-2419.2005.00393.x
    [16]
    LEHODEY P, BERTIGNAC M, HAMPTON J, et al. El Niño Southern Oscillation and tuna in the western Pacific[J]. Nature, 1997, 389(6652): 715-718. doi: 10.1038/39575
    [17]
    DI Y U, CHANG F C, BIN W, et al. Characterization of acid-and pepsin-soluble collagens from spines and skulls of skipjack tuna (Katsuwonus pelamis)[J]. Chin J Nat Medicines, 2014, 12(9): 712-720. doi: 10.1016/S1875-5364(14)60110-2
    [18]
    ROGER C. The plankton of the tropical western Indian Ocean as a biomass indirectly supporting surface tunas (yellowfin, Thunnus albacares and skipjack, Katsuwonus pelamis)[J]. Environ Biol Fish, 1994, 39: 161-172. doi: 10.1007/BF00004934
    [19]
    LEROY B, ITANO D G, USU T, et al. Vertical behavior and the observation of FAD effects on tropical tuna in the warm-pool of the western Pacific Ocean[M]//NIELSEN J L, ARRIZABALAGA H, FRAGOSO N, et al. Tagging and tracking of marine animals with electronic devices. Reviews: methods and technologies in fish biology and fisheries, vol 9. Dordrecht: Springer, 2009: 161-179.
    [20]
    KIYOFUJI H, AOKI Y, KINOSHITA J, et al. Northward migration dynamics of skipjack tuna (Katsuwonus pelamis) associated with the lower thermal limit in the western Pacific Ocean[J]. Prog Oceanogr, 2019, 175: 55-67. doi: 10.1016/j.pocean.2019.03.006
    [21]
    SCHAEFER K M. Vertical movement pattern of skipjack tuna (Katsuwonus pelamis) in the eastern equatorial Pacific Ocean, as revealed with archival tags[J]. Fish Bull, 2007, 105: 379-389.
    [22]
    杨胜龙, 周甦芳, 周为峰, 等. 基于Argo数据的中西太平洋鲣渔获量与水温、表层盐度关系的初步研究[J]. 大连水产学院学报, 2010, 25(1): 34-40.
    [23]
    GARCIA C B, GARCIA J, LOPEZ MARTIN M M, et al. Collinearity: revisiting the variance inflation factor in ridge regression[J]. J Appl Stat, 2015, 42(3): 648-661. doi: 10.1080/02664763.2014.980789
    [24]
    IGARASHI H, SAITOH S I, ISHIKAWA Y, et al. Identifying potential habitat distribution of the neon flying squid (Ommastrephes bartramii) off the eastern coast of Japan in winter[J]. Fish Oceanogr, 2018, 27(1): 16-27. doi: 10.1111/fog.12230
    [25]
    赵静, 柳晓雪, 吴建辉, 等. 零膨胀模型在珍稀鱼类资源时空分布预测中的应用: 以长江口刀鲚为例[J]. 生态学杂志, 2020, 39(9): 3155-3163. doi: 10.13292/j.1000-4890.202009.028
    [26]
    Sagarese S R, Frisk M G, Cerrato R M, et al. Application of generalized additive models to examine ontogenetic and seasonal distributions of spiny dogfish (Squalus acanthias) in the Northeast (US) shelf large marine ecosystem[J]. Can J Fish Aquat Sci, 2014, 71(6): 847-877. doi: 10.1139/cjfas-2013-0342
    [27]
    马金, 黄金玲, 陈锦辉, 等. 基于GAM的长江口鱼类资源时空分布及影响因素[J]. 水产学报, 2020, 44(6): 936-946.
    [28]
    PHILLIPS S J, ANDERSON R P, SCHAPIRE R E. Maximum entropy modeling of species geographic distributions[J]. Ecol Model, 2006, 190(3/4): 231-259.
    [29]
    MANEL S, WILLIAMS H C, ORMEROD S J. Evaluating presence absence models in ecology: the need to account for prevalence[J]. J Appl Ecol, 2001, 38(5): 921-931. doi: 10.1046/j.1365-2664.2001.00647.x
    [30]
    ZU T P, KANG R, WEN M L, et al. Belief reliability distribution based on maximum entropy principle[J]. IEEE Access, 2017, 6: 1577-1582.
    [31]
    ALLOUCHE O, TSOAR A, KADMON R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS)[J]. J Appl Ecol, 2006, 43(6): 1223-1232. doi: 10.1111/j.1365-2664.2006.01214.x
    [32]
    MEYSMAN F J R, BRUERS S. Ecosystem functioning and maximum entropy production: a quantitative test of hypotheses[J]. Philosophical Transactions of the Royal Society B:Biol Sci, 2010, 365(1545): 1405-1416. doi: 10.1098/rstb.2009.0300
    [33]
    SHCHEGLOVITOVA M, ANDERSON R P. Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes[J]. Ecol Model, 2013, 269: 9-17. doi: 10.1016/j.ecolmodel.2013.08.011
    [34]
    ELITH J H, GRAHAM C P, ANDERSON R, et al. Novel methods improve prediction of species distributions from occurrence data[J]. Ecography, 2006, 29(2): 129-151. doi: 10.1111/j.2006.0906-7590.04596.x
    [35]
    ZU T, KANG R, WEN M, et al. Belief reliability distribution based on maximum entropy principle[J]. IEEE Access, 2017, 6: 1577-1582.
    [36]
    WEST A M, KUMAR S, BROWN C S, et al. Field validation of an invasive species MaxEnt model[J]. Ecol Inform, 2016, 36: 126-134. doi: 10.1016/j.ecoinf.2016.11.001
    [37]
    KUMAR P. Assessment of impact of climate change on Rhododendrons in Sikkim Himalayas using Maxent modelling: limitations and challenges[J]. Biodivers Conserv, 2012, 21(5): 1251-1266. doi: 10.1007/s10531-012-0279-1
    [38]
    MORENO R, ZAMORA R, MOLINA J R, et al. Predictive modeling of microhabitats for endemic birds in South Chilean temperate forests using Maximum Entropy (MaxEnt)[J]. Ecol Inform, 2011, 6(6): 364-370. doi: 10.1016/j.ecoinf.2011.07.003
    [39]
    LIU S J, YANG J. Modeling spatial patterns of forest fire in Heilongjiang Province using Generalized Linear Model and Maximum Entropy Model[J]. Chin J Ecol, 2013, 32(6): 1620-1628.
    [40]
    梁阳阳, 陈康, 崔凯, 等. 气候变化情景下须鳗鰕虎鱼在中国的潜在地理分布[J]. 大连海洋大学学报, 2022, 37(5): 739-746.
    [41]
    NURSAN M, YONVITNER Y, AGUS S B. Distribution of skipjack (Katsuwonus pelamis) fishing areas using purse seine fishing equipment in WPP 573[J]. J Trop Fish Manag, 2022, 6(1): 11-20.
    [42]
    ZHANG K L, YAO L J, MENG J S, et al. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change[J]. Sci Total Environ, 2018, 634: 1326-1334. doi: 10.1016/j.scitotenv.2018.04.112
    [43]
    陈世泳. 中西太平洋正鲣渔场推移与表明水温变化之关系[D]. 基隆: 台湾海洋大学, 2006: 24-26.
    [44]
    ZHOU C, HU Y Y, CAO J, et al. Comparison of nominal and standardized catch per unit effort data in quantifying habitat suitability of skipjack tuna in the equatorial Pacific Ocean[J]. Acta Oceanol Sin, 2022, 41(3): 1-10. doi: 10.1007/s13131-021-1922-z
    [45]
    PICAUT J, IOUALALEN M, MENKÈS C, et al. Mechanism of the zonal displacements of the Pacific warm pool: implications for ENSO[J]. Science, 1996, 274(5292): 1486-1489. doi: 10.1126/science.274.5292.1486
    [46]
    ELY B, VIÑAS J, ALVARADO BREMER J R, et al. Consequences of the historical demography on the global population structure of two highly migratory cosmopolitan marine fishes: the yellowfin tuna (Thunnus albacares) and the skipjack tuna (Katsuwonus pelamis)[J]. BMC Evol Biol, 2005, 5(1): 1-9. doi: 10.1186/1471-2148-5-1
    [47]
    LEHODEY P. The pelagic ecosystem of the tropical Pacific Ocean: dynamic spatial modelling and biological consequences of ENSO[J]. Prog Oceanogr, 2001, 49(1/2/3/4): 439-468.
    [48]
    BOYCE D G, TITTENSOR D P, WORM B. Effects of temperature on global patterns of tuna and billfish richness[J]. Mar Ecol Prog Ser, 2008, 355: 267-276. doi: 10.3354/meps07237
    [49]
    MATHIEU-COSTELLO O, BRILL R W, HOCHACHKA P W. Structural basis for oxygen delivery: muscle capillaries and manifolds in tuna red muscle[J]. Comp Biochem Physiol A, 1996, 113(1): 25-31. doi: 10.1016/0300-9629(95)02059-4
    [50]
    BUSHNELL P G, BRILL R W. Responses of swimming skipjack (Katsuwonus pelamis) and yellowfin (Thunnus albacares) tunas to acute hypoxia, and a model of their cardiorespiratory function[J]. Physiol Zool, 1991, 64(3): 787-811. doi: 10.1086/physzool.64.3.30158207
    [51]
    SCHAEFER K M, FULLER D W. Vertical movement pattern of skipjack tuna (Katsuwonus pelamis) in the eastern equatorial Pacific Ocean, as revealed with archival tags[J]. Fish Bull, 2007, 105: 379-989.
    [52]
    ZAINUDDIN M, KIYOFUJI H, SAITOH K, et al. Using multi-sensor satellite remote sensing and catch data to detect ocean hot spots for albacore (Thunnus alalunga) in the northwestern North Pacific[J]. Deep-Sea Res II, 2006, 53(3/4): 419-431. doi: 10.1016/j.dsr2.2006.01.007
    [53]
    BERNAL D, BRILL R W, DICKSON K A, et al. Sharing the water column: physiological mechanisms underlying species-specific habitat use in tunas[J]. Rev Fish Biol Fisher, 2017, 27(4): 843-880. doi: 10.1007/s11160-017-9497-7
    [54]
    DEARY A L, MORET-FERGUSON S, ENGELS M, et al. Influence of central Pacific oceanographic conditions on the potential vertical habitat of four tropical tuna species1[J]. Pac Sci, 2015, 69(4): 461-475. doi: 10.2984/69.4.3
    [55]
    ANDRADE H A. The relationship between the skipjack tuna (Katsuwonus pelamis) fishery and seasonal temperature variability in the south western Atlantic[J]. Fish Oceanogr, 2003, 12(1): 10-18. doi: 10.1046/j.1365-2419.2003.00220.x
    [56]
    LLOPIZ J K, HOBDAY A J. A global comparative analysis of the feeding dynamics and environmental conditions of larval tunas, mackerels, and billfishes[J]. Deep-Sea Res II, 2015, 113: 113-124. doi: 10.1016/j.dsr2.2014.05.014
  • Related Articles

    [1]WEI Zhengkun, DONG Hongbiao, ZHAO Wen, CHEN Fei, ZHANG Chuanxiang, CHEN Jian, GONG Baohua, ZHU Changbo, ZHANG Jiasong. Anesthetic effect and tissue oxidative injury for Litopenaeus vannamei by two anesthetics[J]. South China Fisheries Science, 2023, 19(1): 136-146. DOI: 10.12131/20220070
    [2]ZHAO Xiaoyu, SU Haochang, XU Yu, XU Wujie, HU Xiaojuan, WEN Guoliang, CAO Yucheng, YU Zhaolong. Removal of sulphonamide resistance sul1 gene in water source and pond water by fishery oxidants in aquaculture[J]. South China Fisheries Science, 2021, 17(3): 46-53. DOI: 10.12131/20200231
    [3]ZHANG Linbao, CHEN Haigang, TIAN Fei, SUN Wei, ZHANG Zhe, CAI Wengui. Gender differences in neurotoxicity and oxidative damage of triazophos on Perna viridis[J]. South China Fisheries Science, 2020, 16(6): 75-80. DOI: 10.12131/20200097
    [4]WANG Haifeng, CHENG Yongxu, LI Jinghao, XI Yewen, LI Jiayao. Effects of desiccation and resubmersion on oxidative stress response of crayfish (Procambarus clarkii)[J]. South China Fisheries Science, 2019, 15(5): 69-76. DOI: 10.12131/20190059
    [5]ZHANG Bo, MENG Zihao, LIU Baosuo, LI Haimei, SU Jiaqi, HUANG Guiju, WU Kaichang, YU Dahui. Effect of nucleus-inserting surgery damage on anti-oxidation and immunity of pearl oyster (Pinctada fucata)[J]. South China Fisheries Science, 2017, 13(5): 72-77. DOI: 10.3969/j.issn.2095-0780.2017.05.010
    [6]OU Youjun, CHEN Shixi, WANG Pengfei, LI Jia'er, WEN Jiufu, WANG Wen, XIE Mujiao. Study on oxidative stress response and physiological metabolism related indices of Trachinotus ovatus under hyp-oxia stress[J]. South China Fisheries Science, 2017, 13(3): 120-124. DOI: 10.3969/j.issn.2095-0780.2017.03.016
    [7]LIU Xujia, HUANG Guoqiang, PENG Yinhui. Effect of different dissolved oxygen levels on growth, energy metabolism and oxidative stress of Mugil cephalus[J]. South China Fisheries Science, 2015, 11(4): 88-94. DOI: 10.3969/j.issn.2095-0780.2015.04.013
    [8]DOU Yong, QIAO Xiuting, CHEN Limei, ZHOU Wenli. Study on oxidative stress and damage of Cyclina sinensis exposed to naphthalene[J]. South China Fisheries Science, 2014, 10(4): 39-44. DOI: 10.3969/j.issn.2095-0780.2014.04.007
    [9]ZHANG Ting, LUO Yuliang. Effect of Fenpropathrin on Na+-K+-ATPase and histomorphology of Cyprinus carpio gills[J]. South China Fisheries Science, 2013, 9(6): 41-46. DOI: 10.3969/j.issn.2095-0780.2013.06.007
    [10]YANG Tao, CHEN Haigang, CAI Wengui, QIN Jiefang, JIA Xiaoping. Oxidative stress and damage of Perna viridis by exposure to phenanthrene and benzo (b) fluoranthene[J]. South China Fisheries Science, 2011, 7(4): 24-29. DOI: 10.3969/j.issn.2095-0780.2011.04.004
  • Cited by

    Periodical cited type(9)

    1. 张潇潇,杨少森,邹翠云,张勇,黄锦雄,甘松永,秦真东,黄玮坪,陈永南,吴锦辉,林蠡. 蓝圆鲹的胚胎及胚后发育特征观察. 水产学报. 2025(01): 105-115 .
    2. 杨瑞兰,刘彦斌,赵红雪,刘凯,杨立强,肖伟,赛清云,田永华,赖章龙,阮超岭,柳婷,刘哲,连总强. 大鼻吻鮈胚胎发育特征和初孵仔鱼形态观察. 甘肃农业大学学报. 2024(01): 49-58 .
    3. 王岳松,徐林,杨洋,程睿,王崇,何大江,黎国樑,马海涛,毕建启,陈锋,万正平,张志明. 长鳍光唇鱼(Acrossocheilus longipinnis)人工繁殖和早期发育研究. 南方水产科学. 2024(02): 63-72 . 本站查看
    4. 李文康,骆小年,段友健,李姣,吴晨. 鸭绿沙塘鳢仔稚鱼发育观察及饥饿不可逆点的确定. 大连海洋大学学报. 2023(01): 32-42 .
    5. 石叶忠,朱双全,潘月,申屠琰,冯彬彬,程鑫,张克鑫,朱卫东,夏荣兴,张玉明,竺俊全. 宽鳍鱲仔稚鱼发育. 浙江海洋大学学报(自然科学版). 2023(02): 136-142 .
    6. 王新月,訾方泽,葛建民,陈生熬,姚娜,肖青,艾尼瓦尔·依布拉音. 盐碱胁迫下扁吻鱼幼鱼耐受性分析. 新疆农业科学. 2023(06): 1540-1547 .
    7. 陈思奇,朱永久,吴兴兵,杨德国,李晓莉. 大鳍鳠胚胎及仔稚鱼发育观察. 南方水产科学. 2023(06): 60-70 . 本站查看
    8. 邢雨忻,骆小年,李姣,段友健,季辰跃,常建太. 马口鱼仔稚鱼发育观察及饥饿不可逆点的确定. 大连海洋大学学报. 2023(06): 972-979 .
    9. 王程欣,陈生熬,王新月,訾方泽,林旭元,魏齐. 新疆特克斯河斑重唇鱼胚胎发育和胚后发育观察. 动物学杂志. 2022(05): 668-677 .

    Other cited types(4)

Catalog

    Article views (367) PDF downloads (89) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return