WANG Weisong, TANG Wei, GONG Yihe, WANG Xuefang, LI Yuwei. Modeling habitat of skipjack tuna of free swimming school in Western and Central Pacific Ocean based on MaxEnt model[J]. South China Fisheries Science, 2023, 19(5): 11-21. DOI: 10.12131/20230011
Citation: WANG Weisong, TANG Wei, GONG Yihe, WANG Xuefang, LI Yuwei. Modeling habitat of skipjack tuna of free swimming school in Western and Central Pacific Ocean based on MaxEnt model[J]. South China Fisheries Science, 2023, 19(5): 11-21. DOI: 10.12131/20230011

Modeling habitat of skipjack tuna of free swimming school in Western and Central Pacific Ocean based on MaxEnt model

More Information
  • Received Date: February 04, 2023
  • Revised Date: May 08, 2023
  • Accepted Date: May 24, 2023
  • Available Online: June 04, 2023
  • Due to the negative effects of extensive use of drifting artificial fish aggregating devices (FADs) on tuna stocks, tuna purse seine fishing has become a development trend towards catching free swimming school, so it is necessary to specifically study the habitat use of free swimming school of skipjack tuna (Katsuwonus pelamis). In this study, we used monthly tuna fishery data from the Western and Central Pacific Fisheries Commission (WCPFC) from 2016 to 2020, different layers of water temperature (SST, Temp200), sea surface salinity (SSS), dissolved oxygen concentration (DO0, DO50, DO200), east-west current velocity (EV), north-south current velocity (NV), mixed layer depth (MLD), chlorophyll a concentration (CHL0, CHL50, CHL100, CHL200), and a total of 13 environmental variables by Maximum Entropy (MaxEnt) model to simulate the habitat distribution of the free swimming school and their monthly variation patterns. The results show that the AUC and sensitivity values of both the test and training set of the model were greater than 0.90, and the true skill statistics values were greater than 0.80, indicating that the model has strong predictive ability and can be used for the habitat suitability modeling of skipjack tuna. SST and DO200 were the key factors affecting the habitat preference of free swimming school, with the optimal ranges of 30−31  ℃ and 114−153 mmol·m−3, respectively. During the survey period, the highly suitable habitat for free swimming school was mainly near the waters of Papua New Guinea and Solomon Islands, with a large variation in the range extending eastward in different periods, and the difference in longitude reached 6°. The results provide references for the prediction of the central fishing ground of free swimming school of skipjack tuna by Chinese tuna purse seine fleet.

  • [1]
    Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture, 2021[R]. Rome: FAO, 2021: 127-148.
    [2]
    TRYGONIS V, GEORGAKARAKOS S, DAGORN L, et al. Spatiotemporal distribution of fish schools around drifting fish aggregating devices[J]. Fish Res, 2016, 177: 39-49. doi: 10.1016/j.fishres.2016.01.013
    [3]
    HALLIER J P, GAERTNER D. Drifting fish aggregation devices could act as an ecological trap for tropical tuna species[J]. Mar Ecol Prog Ser, 2008, 353: 255-264. doi: 10.3354/meps07180
    [4]
    TSENG C T, SUN C L, YEH S Z, et al. Spatio-temporal distributions of tuna species and potential habitats in the Western and Central Pacific Ocean derived from multi-satellite data[J]. Int J Remote Sens, 2010, 31(17/18): 4543-4558.
    [5]
    MUGO R, SAITOH S E I I, NIHIRA A, et al. Habitat characteristics of skipjack tuna (Katsuwonus pelamis) in the western North Pacific: a remote sensing perspective[J]. Fish Oceanogr, 2010, 19(5): 382-396. doi: 10.1111/j.1365-2419.2010.00552.x
    [6]
    DUERI S, BOPP L, MAURY O. Projecting the impacts of climate change on skipjack tuna abundance and spatial distribution[J]. Glob Chang Biol, 2014, 20(3): 742-753. doi: 10.1111/gcb.12460
    [7]
    ADAM M S, SIBERT J R. Population dynamics and movements of skipjack tuna (Katsuwonus pelamis) in the Maldivian fishery: analysis of tagging data from an advection-diffusion-reaction model[J]. Aquat Living Resour, 2002, 15(1): 13-23. doi: 10.1016/S0990-7440(02)01155-5
    [8]
    SALAZAR J E, BENAVIDES I F, CABRERA C V P, et al. Generalized additive models with delayed effects and spatial autocorrelation patterns to improve the spatiotemporal prediction of the skipjack (Katsuwonus pelamis) distribution in the Colombian Pacific Ocean[J]. Reg Stud Mar Sci, 2021, 45: 101-115.
    [9]
    MUGO R, SAITOH S I. Ensemble modelling of skipjack tuna (Katsuwonus pelamis) habitats in the western north Pacific using satellite remotely sensed data: a comparative analysis using machine-learning models[J]. Remote Sens, 2020, 12(16): 2591-2605. doi: 10.3390/rs12162591
    [10]
    ALABIA I D, SAITOH S I, MUGO R, et al. Seasonal potential fishing ground prediction of neon flying squid (Ommastrephes pastrami) in the western and central North Pacific[J]. Fish Oceanogr, 2015, 24(2): 190-203. doi: 10.1111/fog.12102
    [11]
    CHEN B Y, HONG Z, HAO X Q, et al. Environmental models for predicting habitat of the Indo-Pacific humpback dolphins in Fujian, China[J]. Aquat Conserv, 2020, 30(4): 787-793. doi: 10.1002/aqc.3279
    [12]
    YOSHINAGA D H, FRANK H A. Histamine-producing bacteria in decomposing skipjack tuna (Katsuwonus pelamis)[J]. Appl Environ Microb, 1982, 44(2): 447-452. doi: 10.1128/aem.44.2.447-452.1982
    [13]
    DAI L, WANG X, STAPLES K W, et al. Factors influencing successful fishing of tuna free-swimming schools in the equatorial western Pacific Ocean[J]. Turk J Fish Aquat Sc, 2019, 20(5): 341-350.
    [14]
    SIBERT J, SENINA I, LEHODEY P, et al. Shifting from marine reserves to maritime zoning for conservation of Pacific bigeye tuna (Thunnus obesus)[J]. P Natl Acad Sci USA, 2012, 109(44): 18221-18225. doi: 10.1073/pnas.1209468109
    [15]
    PRINCE E D, GOODYEAR C P. Hypoxia-based habitat compression of tropical pelagic fishes[J]. Fish Oceanogr, 2006, 15(6): 451-464. doi: 10.1111/j.1365-2419.2005.00393.x
    [16]
    LEHODEY P, BERTIGNAC M, HAMPTON J, et al. El Niño Southern Oscillation and tuna in the western Pacific[J]. Nature, 1997, 389(6652): 715-718. doi: 10.1038/39575
    [17]
    DI Y U, CHANG F C, BIN W, et al. Characterization of acid-and pepsin-soluble collagens from spines and skulls of skipjack tuna (Katsuwonus pelamis)[J]. Chin J Nat Medicines, 2014, 12(9): 712-720. doi: 10.1016/S1875-5364(14)60110-2
    [18]
    ROGER C. The plankton of the tropical western Indian Ocean as a biomass indirectly supporting surface tunas (yellowfin, Thunnus albacares and skipjack, Katsuwonus pelamis)[J]. Environ Biol Fish, 1994, 39: 161-172. doi: 10.1007/BF00004934
    [19]
    LEROY B, ITANO D G, USU T, et al. Vertical behavior and the observation of FAD effects on tropical tuna in the warm-pool of the western Pacific Ocean[M]//NIELSEN J L, ARRIZABALAGA H, FRAGOSO N, et al. Tagging and tracking of marine animals with electronic devices. Reviews: methods and technologies in fish biology and fisheries, vol 9. Dordrecht: Springer, 2009: 161-179.
    [20]
    KIYOFUJI H, AOKI Y, KINOSHITA J, et al. Northward migration dynamics of skipjack tuna (Katsuwonus pelamis) associated with the lower thermal limit in the western Pacific Ocean[J]. Prog Oceanogr, 2019, 175: 55-67. doi: 10.1016/j.pocean.2019.03.006
    [21]
    SCHAEFER K M. Vertical movement pattern of skipjack tuna (Katsuwonus pelamis) in the eastern equatorial Pacific Ocean, as revealed with archival tags[J]. Fish Bull, 2007, 105: 379-389.
    [22]
    杨胜龙, 周甦芳, 周为峰, 等. 基于Argo数据的中西太平洋鲣渔获量与水温、表层盐度关系的初步研究[J]. 大连水产学院学报, 2010, 25(1): 34-40.
    [23]
    GARCIA C B, GARCIA J, LOPEZ MARTIN M M, et al. Collinearity: revisiting the variance inflation factor in ridge regression[J]. J Appl Stat, 2015, 42(3): 648-661. doi: 10.1080/02664763.2014.980789
    [24]
    IGARASHI H, SAITOH S I, ISHIKAWA Y, et al. Identifying potential habitat distribution of the neon flying squid (Ommastrephes bartramii) off the eastern coast of Japan in winter[J]. Fish Oceanogr, 2018, 27(1): 16-27. doi: 10.1111/fog.12230
    [25]
    赵静, 柳晓雪, 吴建辉, 等. 零膨胀模型在珍稀鱼类资源时空分布预测中的应用: 以长江口刀鲚为例[J]. 生态学杂志, 2020, 39(9): 3155-3163. doi: 10.13292/j.1000-4890.202009.028
    [26]
    Sagarese S R, Frisk M G, Cerrato R M, et al. Application of generalized additive models to examine ontogenetic and seasonal distributions of spiny dogfish (Squalus acanthias) in the Northeast (US) shelf large marine ecosystem[J]. Can J Fish Aquat Sci, 2014, 71(6): 847-877. doi: 10.1139/cjfas-2013-0342
    [27]
    马金, 黄金玲, 陈锦辉, 等. 基于GAM的长江口鱼类资源时空分布及影响因素[J]. 水产学报, 2020, 44(6): 936-946.
    [28]
    PHILLIPS S J, ANDERSON R P, SCHAPIRE R E. Maximum entropy modeling of species geographic distributions[J]. Ecol Model, 2006, 190(3/4): 231-259.
    [29]
    MANEL S, WILLIAMS H C, ORMEROD S J. Evaluating presence absence models in ecology: the need to account for prevalence[J]. J Appl Ecol, 2001, 38(5): 921-931. doi: 10.1046/j.1365-2664.2001.00647.x
    [30]
    ZU T P, KANG R, WEN M L, et al. Belief reliability distribution based on maximum entropy principle[J]. IEEE Access, 2017, 6: 1577-1582.
    [31]
    ALLOUCHE O, TSOAR A, KADMON R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS)[J]. J Appl Ecol, 2006, 43(6): 1223-1232. doi: 10.1111/j.1365-2664.2006.01214.x
    [32]
    MEYSMAN F J R, BRUERS S. Ecosystem functioning and maximum entropy production: a quantitative test of hypotheses[J]. Philosophical Transactions of the Royal Society B:Biol Sci, 2010, 365(1545): 1405-1416. doi: 10.1098/rstb.2009.0300
    [33]
    SHCHEGLOVITOVA M, ANDERSON R P. Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes[J]. Ecol Model, 2013, 269: 9-17. doi: 10.1016/j.ecolmodel.2013.08.011
    [34]
    ELITH J H, GRAHAM C P, ANDERSON R, et al. Novel methods improve prediction of species distributions from occurrence data[J]. Ecography, 2006, 29(2): 129-151. doi: 10.1111/j.2006.0906-7590.04596.x
    [35]
    ZU T, KANG R, WEN M, et al. Belief reliability distribution based on maximum entropy principle[J]. IEEE Access, 2017, 6: 1577-1582.
    [36]
    WEST A M, KUMAR S, BROWN C S, et al. Field validation of an invasive species MaxEnt model[J]. Ecol Inform, 2016, 36: 126-134. doi: 10.1016/j.ecoinf.2016.11.001
    [37]
    KUMAR P. Assessment of impact of climate change on Rhododendrons in Sikkim Himalayas using Maxent modelling: limitations and challenges[J]. Biodivers Conserv, 2012, 21(5): 1251-1266. doi: 10.1007/s10531-012-0279-1
    [38]
    MORENO R, ZAMORA R, MOLINA J R, et al. Predictive modeling of microhabitats for endemic birds in South Chilean temperate forests using Maximum Entropy (MaxEnt)[J]. Ecol Inform, 2011, 6(6): 364-370. doi: 10.1016/j.ecoinf.2011.07.003
    [39]
    LIU S J, YANG J. Modeling spatial patterns of forest fire in Heilongjiang Province using Generalized Linear Model and Maximum Entropy Model[J]. Chin J Ecol, 2013, 32(6): 1620-1628.
    [40]
    梁阳阳, 陈康, 崔凯, 等. 气候变化情景下须鳗鰕虎鱼在中国的潜在地理分布[J]. 大连海洋大学学报, 2022, 37(5): 739-746.
    [41]
    NURSAN M, YONVITNER Y, AGUS S B. Distribution of skipjack (Katsuwonus pelamis) fishing areas using purse seine fishing equipment in WPP 573[J]. J Trop Fish Manag, 2022, 6(1): 11-20.
    [42]
    ZHANG K L, YAO L J, MENG J S, et al. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change[J]. Sci Total Environ, 2018, 634: 1326-1334. doi: 10.1016/j.scitotenv.2018.04.112
    [43]
    陈世泳. 中西太平洋正鲣渔场推移与表明水温变化之关系[D]. 基隆: 台湾海洋大学, 2006: 24-26.
    [44]
    ZHOU C, HU Y Y, CAO J, et al. Comparison of nominal and standardized catch per unit effort data in quantifying habitat suitability of skipjack tuna in the equatorial Pacific Ocean[J]. Acta Oceanol Sin, 2022, 41(3): 1-10. doi: 10.1007/s13131-021-1922-z
    [45]
    PICAUT J, IOUALALEN M, MENKÈS C, et al. Mechanism of the zonal displacements of the Pacific warm pool: implications for ENSO[J]. Science, 1996, 274(5292): 1486-1489. doi: 10.1126/science.274.5292.1486
    [46]
    ELY B, VIÑAS J, ALVARADO BREMER J R, et al. Consequences of the historical demography on the global population structure of two highly migratory cosmopolitan marine fishes: the yellowfin tuna (Thunnus albacares) and the skipjack tuna (Katsuwonus pelamis)[J]. BMC Evol Biol, 2005, 5(1): 1-9. doi: 10.1186/1471-2148-5-1
    [47]
    LEHODEY P. The pelagic ecosystem of the tropical Pacific Ocean: dynamic spatial modelling and biological consequences of ENSO[J]. Prog Oceanogr, 2001, 49(1/2/3/4): 439-468.
    [48]
    BOYCE D G, TITTENSOR D P, WORM B. Effects of temperature on global patterns of tuna and billfish richness[J]. Mar Ecol Prog Ser, 2008, 355: 267-276. doi: 10.3354/meps07237
    [49]
    MATHIEU-COSTELLO O, BRILL R W, HOCHACHKA P W. Structural basis for oxygen delivery: muscle capillaries and manifolds in tuna red muscle[J]. Comp Biochem Physiol A, 1996, 113(1): 25-31. doi: 10.1016/0300-9629(95)02059-4
    [50]
    BUSHNELL P G, BRILL R W. Responses of swimming skipjack (Katsuwonus pelamis) and yellowfin (Thunnus albacares) tunas to acute hypoxia, and a model of their cardiorespiratory function[J]. Physiol Zool, 1991, 64(3): 787-811. doi: 10.1086/physzool.64.3.30158207
    [51]
    SCHAEFER K M, FULLER D W. Vertical movement pattern of skipjack tuna (Katsuwonus pelamis) in the eastern equatorial Pacific Ocean, as revealed with archival tags[J]. Fish Bull, 2007, 105: 379-989.
    [52]
    ZAINUDDIN M, KIYOFUJI H, SAITOH K, et al. Using multi-sensor satellite remote sensing and catch data to detect ocean hot spots for albacore (Thunnus alalunga) in the northwestern North Pacific[J]. Deep-Sea Res II, 2006, 53(3/4): 419-431. doi: 10.1016/j.dsr2.2006.01.007
    [53]
    BERNAL D, BRILL R W, DICKSON K A, et al. Sharing the water column: physiological mechanisms underlying species-specific habitat use in tunas[J]. Rev Fish Biol Fisher, 2017, 27(4): 843-880. doi: 10.1007/s11160-017-9497-7
    [54]
    DEARY A L, MORET-FERGUSON S, ENGELS M, et al. Influence of central Pacific oceanographic conditions on the potential vertical habitat of four tropical tuna species1[J]. Pac Sci, 2015, 69(4): 461-475. doi: 10.2984/69.4.3
    [55]
    ANDRADE H A. The relationship between the skipjack tuna (Katsuwonus pelamis) fishery and seasonal temperature variability in the south western Atlantic[J]. Fish Oceanogr, 2003, 12(1): 10-18. doi: 10.1046/j.1365-2419.2003.00220.x
    [56]
    LLOPIZ J K, HOBDAY A J. A global comparative analysis of the feeding dynamics and environmental conditions of larval tunas, mackerels, and billfishes[J]. Deep-Sea Res II, 2015, 113: 113-124. doi: 10.1016/j.dsr2.2014.05.014
  • Related Articles

    [1]ZHANG Gongjun, YANG Changping, LIU Yan, ZHOU Wenli, SHAN Binbin, WANG Liangming, WANG Sihan, SUN Dianrong, JIA Chunbin. Pattern of fish community and its relationship with environmental factors in Fangchenggang (Qinzhou coastal area of Beibu Gulf)[J]. South China Fisheries Science, 2022, 18(4): 20-33. DOI: 10.12131/20210255
    [2]GONG Yuyan, XIAO Yayuan, XU Shannan, LIU Yong, YANG Yutao, HUANG Zirong, LI Chunhou. Zooplankton community structure in Hailing Bay and its relationship with primary environmental factors[J]. South China Fisheries Science, 2019, 15(6): 49-55. DOI: 10.12131/20180220
    [3]WANG Yanfeng, HU Qiwei, YU Jing, CHEN Pimao, SHU Liming. Effect assessment of fishery resources proliferation in Zhelin Bay marine ranching in eastern Guangdong[J]. South China Fisheries Science, 2019, 15(2): 12-19. DOI: 10.12131/20180143
    [4]MA Huan, QIN Chuanxin, CHEN Pimao, LIN Huijie, DUAN Dingyu. Valuation of ecosystem service of marine ranching in Zhelin Bay[J]. South China Fisheries Science, 2019, 15(1): 10-19. DOI: 10.12131/20180041
    [5]MA Huan, QIN Chuanxin, CHEN Pimao, FENG Xue, YUAN Huarong, LI Xiaoguo, LIN Huijie. Study of biomass carbon storage in Zhelin Bay marine ranch of South China Sea[J]. South China Fisheries Science, 2017, 13(6): 56-64. DOI: 10.3969/j.issn.2095-0780.2017.06.007
    [6]YUAN Huarong, CHEN Pimao, QIN Chuanxin, LI Xiaoguo, ZHOU Yanbo, FENG Xue, YU Jing, SHU Liming, TANG Zhenzhao, TONG Fei. Seasonal variation of fish community structure in Zhelin Bay, the South China Sea[J]. South China Fisheries Science, 2017, 13(2): 26-35. DOI: 10.3969/j.issn.2095-0780.2017.02.004
    [7]TONG Fei, QIN Chuanxin, YU Jing, CHEN Pimao. Ecological basis assessment of artificial reef site selection in Liuniu coastal waters of Zhelin Bay, Eastern Guangdong[J]. South China Fisheries Science, 2016, 12(6): 25-32. DOI: 10.3969/j.issn.2095-0780.2016.06.004
    [8]LIAO Xiuli, CHEN Pimao, MA Shengwei, CHEN Haigang. Community structure of phytoplankton and its relationship with environmental factors before and after construction of artificial reefs in Yangmeikeng, Daya Bay[J]. South China Fisheries Science, 2013, 9(5): 109-119. DOI: 10.3969/j.issn.2095-0780.2013.05.017
    [9]GU Yangguang, LIN Qin, WANG Zenghuang, MA Shengwei, LU Tengteng, KE Changliang, DU Feiyan. Spatial distribution and potential ecological risk assessment of heavy metals in Zhelin Bay sediments and its vicinity, China[J]. South China Fisheries Science, 2013, 9(2): 32-37. DOI: 10.3969/j.issn.2095-0780.2013.02.006
    [10]JIANG Zengjie, FANG Jianguang, MEN Qiang, WANG Wei. Studies on the interaction between shellfish long-line culture and environment in Sungo Bay[J]. South China Fisheries Science, 2006, 2(1): 23-29.
  • Cited by

    Periodical cited type(34)

    1. 李珊,高延奇,赵立宁,王莎,陈善真. 丁香酚和2-苯氧乙醇对不同品系罗非鱼的麻醉效果比较. 水产学杂志. 2025(02): 64-73 .
    2. 宋霖,陈小江,高鹏. 常温下三卡因和丁香酚对条纹小鲃的麻醉效果研究. 水产科学. 2024(01): 144-151 .
    3. 吴冰,董秀金,徐一力,许建和. 丁香酚慢性麻醉对红鲫血液生理及肝脏hsp70和hsp90mRNA表达量的影响. 河北渔业. 2024(05): 17-21 .
    4. 董秀金,徐一力,吴冰,许建和. 鱼类麻醉保活运输研究进展. 河北渔业. 2024(06): 41-46 .
    5. 谢希尧,区又君,徐淑玉,林欣,李加儿,肖裕杰. MS-222和丁香酚胁迫对四指马鲅幼鱼鳃及肝脏组织微观结构的影响. 广东农业科学. 2024(05): 144-154 .
    6. 黄琼叶,张建明,朱友芳,许秋龙. 丁香酚对细点石斑鱼麻醉效果及肝脏生理生化指标的影响. 河北渔业. 2024(10): 24-29 .
    7. 周烨,骆小年,段友健,李姣,罗来幸,曾雪,刘佳欣. 2种麻醉剂对马口鱼幼鱼麻醉效果研究. 水产科学. 2024(06): 965-973 .
    8. 吕曼,董义超,李蒙,于会国,郭建东,石英. MS-222对墨瑞鳕麻醉效果及血清生化指标的影响. 浙江海洋大学学报(自然科学版). 2024(04): 352-358 .
    9. 谢希尧,区又君,徐淑玉,林欣,李加儿,肖裕杰. 丁香酚对四指马鲅幼鱼的麻醉效果及抗氧化影响. 中国渔业质量与标准. 2024(04): 1-13 .
    10. 马凯,朱晓磊,张澜澜,卫明亮,赵成,何宝全,尹家胜,张永泉. 黑龙江茴鱼对几种常用消毒药物和麻醉剂的耐受性. 水产学杂志. 2024(06): 38-44 .
    11. 唐忠林,张佳佳,周国勤,陈树桥,徐钢春,徐跑,强俊,王佩佩. 丁香酚对“优鲈3号”幼鱼运输水质及其血液、肌肉生理指标的影响. 水产科技情报. 2023(01): 44-52 .
    12. 韦政坤,董宏标,赵文,陈飞,张传镶,陈健,宫保华,朱长波,张家松. 两种麻醉剂对凡纳滨对虾麻醉效果及组织氧化损伤的影响. 南方水产科学. 2023(01): 136-146 . 本站查看
    13. 胡望娇,王翠华,冯广朋,庄平,郑跃平,季强. 丁香酚和MS-222对松江鲈的麻醉效果. 海洋渔业. 2023(02): 181-190 .
    14. 林晨,吴敏,王凯,曾三妹,吴佳雯,钟莉萍,凌淞江. QuEChERS-超高压液相色谱-串联质谱法同时测定水产品中的6种丁香酚类麻醉剂. 食品科学. 2023(08): 324-329 .
    15. 章霞,徐志进,李伟业,殷小龙,王易帆,陈爽,马雪彬. MS-222对大黄鱼幼鱼麻醉效果、组织结构及抗氧化酶活性的影响. 大连海洋大学学报. 2023(02): 267-274 .
    16. 陈军平,武慧慧,沈方方,张佳鑫,于若梦,付永杰,赵道全,谢国强,孙文喜. MS-222与丁香酚对黄尾鲴麻醉效果的比较. 湖北农业科学. 2023(08): 133-139 .
    17. 陈欣怡,王好学,徐开达,李鹏飞,周永东. 丁香酚对褐菖鲉的麻醉效果. 广东海洋大学学报. 2023(06): 146-152 .
    18. 李娇妮,廖秀睿,李曦,吕布,杨守国,臧战,VASQUEZ Herbert Ely,王爱民,郑兴,顾志峰. 运输方式对马氏珠母贝(Pinctada fucata)稚贝存活率、生长、消化及抗氧化性能的影响探究. 海洋与湖沼. 2022(02): 414-420 .
    19. 戴晓娜,陆亦宽,蔡杨杨,孙虹,卢瑛,谢晶. 基于磁性纳米探针的渔用麻醉剂三卡因的快速检测方法. 食品与发酵工业. 2022(08): 245-253 .
    20. 朱晓玲,张菊,刘杰,韩智,吴婉琴,张莉,王会霞,江丰. 湖北省水产品兽药残留状况分析. 食品安全质量检测学报. 2021(01): 69-77 .
    21. 谢晶,曹杰. 渔用麻醉剂在鱼类麻醉保活运输中应用的研究进展. 上海海洋大学学报. 2021(01): 189-196 .
    22. 胡发文,王晓龙,高凤祥,李莉,菅玉霞,王雪,樊英,潘雷,郭文. 温度、盐度和两种麻醉剂对大泷六线鱼幼鱼耗氧率、排氨率的影响. 海洋科学. 2021(01): 54-61 .
    23. 刘阳,贾贵芳,杨飞,李忠利. 麻醉剂MS-222对运输胁迫黄颡鱼抗氧化系统的影响. 安徽农学通报. 2021(05): 67-69 .
    24. 陈旭,左涛,周胜杰,杨蕊,于刚,秦传新,马振华. 尖吻鲈幼鱼运输密度和时长对运输水质及其复苏率和抗氧化能力的影响. 南方水产科学. 2021(02): 122-128 . 本站查看
    25. 曹杰,王琪,梅俊,谢晶. 有水与无水保活运输对大菱鲆生理应激及鱼肉品质的影响. 水产学报. 2021(07): 1034-1042 .
    26. 王维鑫,崔爱君,徐永江,李海宁,柳学周,王滨,姜燕,刘新富. MS-222和丁香油对黄条(鱼师)麻醉效果研究. 渔业科学进展. 2021(06): 205-214 .
    27. 曹杰,谢晶. 间氨基苯甲酸乙酯甲磺酸盐在大菱鲆模拟保活运输中的作用效果. 食品科学. 2021(23): 246-253 .
    28. 王金林,王万良,张忭忭,谭大明. MS-222和丁香酚对亚东鲑鱼麻醉效果的比较. 甘肃农业大学学报. 2021(06): 26-32+40 .
    29. 管敏,张德志,饶军,唐大明. 温度对中华鲟(Acipenser sinensis)幼鱼麻醉效果的影响. 生态学杂志. 2020(02): 576-585 .
    30. 朱之发,边力,刘心田,常青,阮晓红,陈四清,李凤辉,葛建龙,刘长琳. 12种麻醉剂对长蛸的麻醉效果. 中国水产科学. 2020(02): 195-203 .
    31. 黄小林,杨洁,戴超,李涛,杨育凯,黄忠,虞为,林黑着,孙莘溢,舒琥. 丁香酚对紫红笛鲷幼鱼的麻醉效果. 中国渔业质量与标准. 2020(02): 51-58 .
    32. 陈小江,熊俐灵,吴建顾,亓鲁,王权. MS-222和丁香酚对四川华吸鳅耗氧率和排氨率的影响. 南方水产科学. 2020(04): 69-74 . 本站查看
    33. 王文豪,董宏标,孙彩云,段亚飞,李华,刘青松,张家松,曾祥兵. 石菖蒲挥发油和水溶性氮酮对鱼用麻醉剂的促皮渗透效果研究. 南方水产科学. 2020(04): 62-68 . 本站查看
    34. 杨洁,朱晓玲. 丁香酚在水产品中的残留及风险评估研究进展. 食品安全质量检测学报. 2020(18): 6523-6529 .

    Other cited types(7)

Catalog

    Recommendations
    风浪流耦合作用下方型升降式网箱水动力特性研究
    王绍敏 et al., 南方水产科学, 2025
    3组常用鱼类edna宏条形码通用引物对三亚水环境样品的物种检出效果比较
    郭瑶杰 et al., 南方水产科学, 2025
    黄颡鱼源迟缓爱德华氏菌的分离鉴定及其药物敏感性研究
    高宣 et al., 南方水产科学, 2024
    抗副溶血弧菌卵黄抗体制备及其与不同血清型菌株交叉反应研究
    陈静妮 et al., 南方水产科学, 2024
    常温下三卡因和丁香酚对条纹小鲃的麻醉效果研究
    宋霖 et al., 水产科学, 2024
    肾性继发性甲状旁腺功能亢进症手术治疗的麻醉管理
    张杨阳 et al., 协和医学杂志, 2025
    The alleviative effect of c-phycocyanin peptides against tnbs-induced inflammatory bowel disease in zebrafish via the mapk/nrf2 signaling pathways
    Xu, Fenghua et al., FISH & SHELLFISH IMMUNOLOGY, 2024
    Coadministration of cd19-and cd22-directed chimeric antigen receptor t-cell therapy in childhood b-cell acute lymphoblastic leukemia: a single-arm, multicenter, phase ii trial
    Wang, Tianyi et al., JOURNAL OF CLINICAL ONCOLOGY, 2023
    Knockdown of ribosomal protein l22-like 1 arrests the cell cycle and promotes apoptosis in colorectal cancer
    CYTOJOURNAL, 2024
    Potential analgesic effect of panax ginseng in reducing acute pain in mice
    INTERNATIONAL JOURNAL OF PHARMACOLOGY, 2023
    Powered by
    Article views (380) PDF downloads (89) Cited by(41)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return