YUAN Man, WANG Pengfei, YAN Lulu, ZHAO Chao, FAN Sigang, CHEN Xiang, QIU Lihua. Circadian rhythmicity of clock genes in pituitary and hypothalamus of spotted sea perch (Lateolabrax maculates) under three photoperiod conditions[J]. South China Fisheries Science, 2020, 16(6): 39-46. DOI: 10.12131/20200113
Citation: YUAN Man, WANG Pengfei, YAN Lulu, ZHAO Chao, FAN Sigang, CHEN Xiang, QIU Lihua. Circadian rhythmicity of clock genes in pituitary and hypothalamus of spotted sea perch (Lateolabrax maculates) under three photoperiod conditions[J]. South China Fisheries Science, 2020, 16(6): 39-46. DOI: 10.12131/20200113

Circadian rhythmicity of clock genes in pituitary and hypothalamus of spotted sea perch (Lateolabrax maculates) under three photoperiod conditions

More Information
  • Received Date: May 21, 2020
  • Revised Date: July 20, 2020
  • Accepted Date: August 18, 2020
  • Available Online: September 27, 2020
  • Lateolabrax maculatus is an important economic fish in China. Its reproduction is regulated by photoperiod. In this study, seven important clock genes (Bmal2, Npas4, Per2, Cry1, Cry1a, Cry2 and Timeless) were detected in the pituitary and hypothalamus of L. maculatus under three photoperiod conditions (16L∶8D, 8L∶16D and 12L∶12D). The results show that under 12L∶12D condition, Per2, Cry1, Cry2, Cry1a and Timeless displayed daily rhythmic expression in pituitary, and Per2, Cry2, Cry1 and Timeless displayed daily rhythmic expression in hypothalamus. The circadian rhythms of the same gene in pituitary and hypothalamus were also different. Long day (16L∶8D) or short day (8L∶16D) could change the amplitude of circadian rhythm and the peak phase, and some genes lost circadian rhythms under this condition.

  • [1]
    VELARDE E, HAQUE R, IUVONE P M, et al. Circadian clock genes of goldfish, Carassius auratus: cDNA cloning and rhythmic expression of period and cryptochrome transcripts in retina, liver, and gut[J]. J Biol Rhythm, 2009, 24(2): 104-113. doi: 10.1177/0748730408329901
    [2]
    SCHMUTZ I, RIPPERGER J A, BAERISWYL-AEBISCHER S, et al. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors[J]. Genes Dev, 2010, 24(4): 345-357. doi: 10.1101/gad.564110
    [3]
    CHANG D C. Neural circuits underlying circadian behavior in Drosophila melanogaster[J]. Behav Process, 2006, 71(2/3): 211-225.
    [4]
    KLEIN D C, MOORE R Y, REPPERT S M. Suprachiasmatic nucleus: the mind's clock[J]. Electroen Clin Neuro, 1993, 86(6): 446-447.
    [5]
    UNDERWOOD H, STEELE C T, ZIVOKOVIC B. Circadian organization and the role of the pineal in birds[J]. Microsc Res Tech, 2001, 53(1): 48-62. doi: 10.1002/jemt.1068
    [6]
    FALCON J. Cellular circadian clocks in the pineal[J]. Prog Neurobiol, 1999, 58(2): 121-162. doi: 10.1016/S0301-0082(98)00078-1
    [7]
    NAKANE Y, IKEGAMI K, IIGO M, et al. The saccus vasculosus of fish is a sensor of seasonal changes in day length[J]. Nat Commun, 2013, 4: 1-7.
    [8]
    CEINOS R M, CHIVITE M, LÓPEZ-PATIÑO M A, et al. Differential circadian and light-driven rhythmicity of clock gene expression and behaviour in the turbot, Scophthalmus maximus[J]. PLoS One, 2019, 14(7): e0219153. doi: 10.1371/journal.pone.0219153
    [9]
    SHIEH K R, YANG S C, LU X Y, et al. Diurnal rhythmic expression of the rhythm-related genes, rPeriod1, rPeriod2, and rClock, in the rat brain[J]. J Biomed Sci, 2005, 12(1): 209-217. doi: 10.1007/s11373-004-8176-6
    [10]
    DELAUNAY F, THISSE C, MARCHAND O, et al. An inherited functional circadian clock in zebrafish embryos[J]. Science, 2000, 289(5477): 297-300. doi: 10.1126/science.289.5477.297
    [11]
    KOBAYASHI Y, ISHIKAWA T, HIRAYAMA J, et al. Molecular analysis of zebrafish photolyase/cryptochrome family: two types of cryptochromes present in zebrafish[J]. Genes Cells, 2000, 5(9): 725-738. doi: 10.1046/j.1365-2443.2000.00364.x
    [12]
    SNCHEZ J A, MADRID J A, SNCHEZ-VZQUEZ F J. Molecular cloning, tissue distribution, and daily rhythms of expression of per1 gene in European sea bass (Dicentrarchus labrax)[J]. Chronobiol Int, 2010, 27(1): 19-33. doi: 10.3109/07420520903398633
    [13]
    POZO A, VERA L M, SNCHEZ J A, et al. Molecular cloning, tissue distribution and daily expression of cry1 and cry2 clock genes in European sea bass (Dicentrarchus labrax)[J]. Comp Biochem Physiol A, 2012, 163(34): 364-371.
    [14]
    DELGADO M J, ALONSO-GÓMEZ A L, GANCEDO B, et al. Serotonin N-acetyltransferase (NAT) activity and melatonin levels in the frog retina are not correlated during the seasonal cycle[J]. Gen Comp Endocrinol, 1993, 92(2): 143-150. doi: 10.1006/gcen.1993.1151
    [15]
    CERMAKIAN N, WHITMORE D, FOULKES NS, et al. Asynchronous oscillations of two zebrafish CLOCK partners reveal differential clock control and function[J]. Proc Natl Acad Sci USA, 2000, 97(8): 4339-4344. doi: 10.1073/pnas.97.8.4339
    [16]
    KANEKO M, HERNANDEZ-BORSETTI N, CAHILL G M. Diversity of zebrafish peripheral oscillators revealed by luciferase reporting[J]. Proc Natl Acad Sci USA, 2006, 103(39): 14614-14619. doi: 10.1073/pnas.0606563103
    [17]
    CAHILL G M. Clock mechanisms in zebrafish[J]. Cell Tissue Res, 2002, 309(1): 27-34. doi: 10.1007/s00441-002-0570-7
    [18]
    PEIRSON S N, BUTLER J N, DUFFIELD G E, et al. Comparison of clock gene expression in SCN, retina, heart, and liver of mice[J]. Biochem Biophys Res Commun, 2006, 351(4): 800-807. doi: 10.1016/j.bbrc.2006.10.118
    [19]
    BROWN S A, RIPPERGER J, KADENER S, et al. PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator[J]. Science, 2005, 308(5722): 693-696. doi: 10.1126/science.1107373
    [20]
    TOLOZA-VILLALOBOS J, ARROYO, OPAZO J C, et al. The circadian clock of teleost fish: a comparative analysis reveals distinct fates for duplicated genes[J]. J Mol Evol, 2015, 80(1): 57-64. doi: 10.1007/s00239-014-9660-x
    [21]
    BUHR E D, TAKAHASHI J. Molecular components of the mammalian circadian clock[J]. Handb Exp Pharmacol, 2013, 217: 3-27.
    [22]
    MORI K, MIYAZATO M, KANGAWA K. Neuromedin S: discovery and functions[J]. Results Probl Cell Differ, 2008, 46: 201-212.
    [23]
    FULLER P M, LU J, SAPER C B. Differential rescue of light- and food-entrainable circadian rhythms[J]. Science, 2008, 320(5879): 1074-1077. doi: 10.1126/science.1153277
    [24]
    DARDENTE H, CERMAKIAN N. Molecular circadian rhythms in central and peripheral clocks in mammals[J]. Chronobiol Int, 2007, 24(2): 195-213. doi: 10.1080/07420520701283693
    [25]
    HUANG T S, RUOFF P, FJELLDAL P G. Effect of continuous light on daily levels of plasma melatonin and cortisol and expression of clock genes in pineal gland, brain, and liver in atlantic salmon postsmolts[J]. Chronobiol Int, 2010, 27(9/10): 1715-1734.
  • Related Articles

    [1]DANG Yingchao, DAI Xiaojie, WU Feng. Effects of vertical distribution and soaking time of tuna longline fishing hooks on catches in North Pacific[J]. South China Fisheries Science, 2020, 16(3): 86-93. DOI: 10.12131/20190252
    [2]YANG Wenchao, HUANG Daojian, CHEN Jixin, CHEN Xiaoyan, WANG Yushan. Spatio-temporal distribution and eutrophication assessment of nutrients in Daya Bay during 2009–2015[J]. South China Fisheries Science, 2020, 16(2): 54-61. DOI: 10.12131/20190244
    [3]XU Shumin, QI Zhanhui, SHI Rongjun, LIU Yong, HAN Tingting, HUANG Honghui. Influence of mariculure on tempo-spatial distribution of nitrogen and phosphorus in subtropical zone: a case study of Shen'ao Bay[J]. South China Fisheries Science, 2019, 15(4): 29-38. DOI: 10.12131/20190049
    [4]YU Jie, CHEN Guobao, ZHANG Kui, CHEN Zuozhi. Vertical distribution of summer chlorophyll a concentration in the middle South China Sea[J]. South China Fisheries Science, 2016, 12(4): 1-8. DOI: 10.3969/j.issn.2095-0780.2016.04.001
    [5]ZHANG Wenwen, GUO Yongjian, LI Junwei, ZHU Changbo, CHEN Suwen, XIE Xiaoyong. Effect of nutrient on growth and biochemical composition of Gloiopeltis furcata[J]. South China Fisheries Science, 2016, 12(2): 30-35. DOI: 10.3969/j.issn.2095-0780.2016.02.005
    [6]PENG Xuan, MA Shengwei, CHEN Haigang, ZHANG Zhe, ZHOU Yanbo, CAI Wengui. Spatial distribution and assessment of nutrients in marine ranching in Zhelin Bay-Nanao Island in summer[J]. South China Fisheries Science, 2014, 10(6): 27-35. DOI: 10.3969/j.issn.2095-0780.2014.06.004
    [7]WANG Cong, LIN Jun, CHEN Pi-mao, ZHANG Shou-yu. Numerical simulation on water exchange in Daya Bay[J]. South China Fisheries Science, 2008, 4(4): 8-15.
    [8]WANG Hong, CHEN Pimao, JIA Xiaoping, ZHANG Shouyu, TANG Zhenchao, YU Jing, TAO Feng. Advance in the research on water exchange in the sea area[J]. South China Fisheries Science, 2008, 4(2): 75-80.
    [9]SUN Xiaoqing, DONG Shugang, TANG Zhihong. Influences of nutrients and illuminance on phytoplankton community structure[J]. South China Fisheries Science, 2008, 4(1): 1-9.
    [10]LI Zhan-dong, LIN Qin, HUANG Hong-hui. The study of phosphate exchange rates at the sediment-water interface in fish cage area of Dapengao[J]. South China Fisheries Science, 2006, 2(6): 25-30.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return