YUAN Man, WANG Pengfei, YAN Lulu, ZHAO Chao, FAN Sigang, CHEN Xiang, QIU Lihua. Circadian rhythmicity of clock genes in pituitary and hypothalamus of spotted sea perch (Lateolabrax maculates) under three photoperiod conditions[J]. South China Fisheries Science, 2020, 16(6): 39-46. DOI: 10.12131/20200113
Citation: YUAN Man, WANG Pengfei, YAN Lulu, ZHAO Chao, FAN Sigang, CHEN Xiang, QIU Lihua. Circadian rhythmicity of clock genes in pituitary and hypothalamus of spotted sea perch (Lateolabrax maculates) under three photoperiod conditions[J]. South China Fisheries Science, 2020, 16(6): 39-46. DOI: 10.12131/20200113

Circadian rhythmicity of clock genes in pituitary and hypothalamus of spotted sea perch (Lateolabrax maculates) under three photoperiod conditions

More Information
  • Received Date: May 21, 2020
  • Revised Date: July 20, 2020
  • Accepted Date: August 18, 2020
  • Available Online: September 27, 2020
  • Lateolabrax maculatus is an important economic fish in China. Its reproduction is regulated by photoperiod. In this study, seven important clock genes (Bmal2, Npas4, Per2, Cry1, Cry1a, Cry2 and Timeless) were detected in the pituitary and hypothalamus of L. maculatus under three photoperiod conditions (16L∶8D, 8L∶16D and 12L∶12D). The results show that under 12L∶12D condition, Per2, Cry1, Cry2, Cry1a and Timeless displayed daily rhythmic expression in pituitary, and Per2, Cry2, Cry1 and Timeless displayed daily rhythmic expression in hypothalamus. The circadian rhythms of the same gene in pituitary and hypothalamus were also different. Long day (16L∶8D) or short day (8L∶16D) could change the amplitude of circadian rhythm and the peak phase, and some genes lost circadian rhythms under this condition.

  • [1]
    VELARDE E, HAQUE R, IUVONE P M, et al. Circadian clock genes of goldfish, Carassius auratus: cDNA cloning and rhythmic expression of period and cryptochrome transcripts in retina, liver, and gut[J]. J Biol Rhythm, 2009, 24(2): 104-113. doi: 10.1177/0748730408329901
    [2]
    SCHMUTZ I, RIPPERGER J A, BAERISWYL-AEBISCHER S, et al. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors[J]. Genes Dev, 2010, 24(4): 345-357. doi: 10.1101/gad.564110
    [3]
    CHANG D C. Neural circuits underlying circadian behavior in Drosophila melanogaster[J]. Behav Process, 2006, 71(2/3): 211-225.
    [4]
    KLEIN D C, MOORE R Y, REPPERT S M. Suprachiasmatic nucleus: the mind's clock[J]. Electroen Clin Neuro, 1993, 86(6): 446-447.
    [5]
    UNDERWOOD H, STEELE C T, ZIVOKOVIC B. Circadian organization and the role of the pineal in birds[J]. Microsc Res Tech, 2001, 53(1): 48-62. doi: 10.1002/jemt.1068
    [6]
    FALCON J. Cellular circadian clocks in the pineal[J]. Prog Neurobiol, 1999, 58(2): 121-162. doi: 10.1016/S0301-0082(98)00078-1
    [7]
    NAKANE Y, IKEGAMI K, IIGO M, et al. The saccus vasculosus of fish is a sensor of seasonal changes in day length[J]. Nat Commun, 2013, 4: 1-7.
    [8]
    CEINOS R M, CHIVITE M, LÓPEZ-PATIÑO M A, et al. Differential circadian and light-driven rhythmicity of clock gene expression and behaviour in the turbot, Scophthalmus maximus[J]. PLoS One, 2019, 14(7): e0219153. doi: 10.1371/journal.pone.0219153
    [9]
    SHIEH K R, YANG S C, LU X Y, et al. Diurnal rhythmic expression of the rhythm-related genes, rPeriod1, rPeriod2, and rClock, in the rat brain[J]. J Biomed Sci, 2005, 12(1): 209-217. doi: 10.1007/s11373-004-8176-6
    [10]
    DELAUNAY F, THISSE C, MARCHAND O, et al. An inherited functional circadian clock in zebrafish embryos[J]. Science, 2000, 289(5477): 297-300. doi: 10.1126/science.289.5477.297
    [11]
    KOBAYASHI Y, ISHIKAWA T, HIRAYAMA J, et al. Molecular analysis of zebrafish photolyase/cryptochrome family: two types of cryptochromes present in zebrafish[J]. Genes Cells, 2000, 5(9): 725-738. doi: 10.1046/j.1365-2443.2000.00364.x
    [12]
    SNCHEZ J A, MADRID J A, SNCHEZ-VZQUEZ F J. Molecular cloning, tissue distribution, and daily rhythms of expression of per1 gene in European sea bass (Dicentrarchus labrax)[J]. Chronobiol Int, 2010, 27(1): 19-33. doi: 10.3109/07420520903398633
    [13]
    POZO A, VERA L M, SNCHEZ J A, et al. Molecular cloning, tissue distribution and daily expression of cry1 and cry2 clock genes in European sea bass (Dicentrarchus labrax)[J]. Comp Biochem Physiol A, 2012, 163(34): 364-371.
    [14]
    DELGADO M J, ALONSO-GÓMEZ A L, GANCEDO B, et al. Serotonin N-acetyltransferase (NAT) activity and melatonin levels in the frog retina are not correlated during the seasonal cycle[J]. Gen Comp Endocrinol, 1993, 92(2): 143-150. doi: 10.1006/gcen.1993.1151
    [15]
    CERMAKIAN N, WHITMORE D, FOULKES NS, et al. Asynchronous oscillations of two zebrafish CLOCK partners reveal differential clock control and function[J]. Proc Natl Acad Sci USA, 2000, 97(8): 4339-4344. doi: 10.1073/pnas.97.8.4339
    [16]
    KANEKO M, HERNANDEZ-BORSETTI N, CAHILL G M. Diversity of zebrafish peripheral oscillators revealed by luciferase reporting[J]. Proc Natl Acad Sci USA, 2006, 103(39): 14614-14619. doi: 10.1073/pnas.0606563103
    [17]
    CAHILL G M. Clock mechanisms in zebrafish[J]. Cell Tissue Res, 2002, 309(1): 27-34. doi: 10.1007/s00441-002-0570-7
    [18]
    PEIRSON S N, BUTLER J N, DUFFIELD G E, et al. Comparison of clock gene expression in SCN, retina, heart, and liver of mice[J]. Biochem Biophys Res Commun, 2006, 351(4): 800-807. doi: 10.1016/j.bbrc.2006.10.118
    [19]
    BROWN S A, RIPPERGER J, KADENER S, et al. PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator[J]. Science, 2005, 308(5722): 693-696. doi: 10.1126/science.1107373
    [20]
    TOLOZA-VILLALOBOS J, ARROYO, OPAZO J C, et al. The circadian clock of teleost fish: a comparative analysis reveals distinct fates for duplicated genes[J]. J Mol Evol, 2015, 80(1): 57-64. doi: 10.1007/s00239-014-9660-x
    [21]
    BUHR E D, TAKAHASHI J. Molecular components of the mammalian circadian clock[J]. Handb Exp Pharmacol, 2013, 217: 3-27.
    [22]
    MORI K, MIYAZATO M, KANGAWA K. Neuromedin S: discovery and functions[J]. Results Probl Cell Differ, 2008, 46: 201-212.
    [23]
    FULLER P M, LU J, SAPER C B. Differential rescue of light- and food-entrainable circadian rhythms[J]. Science, 2008, 320(5879): 1074-1077. doi: 10.1126/science.1153277
    [24]
    DARDENTE H, CERMAKIAN N. Molecular circadian rhythms in central and peripheral clocks in mammals[J]. Chronobiol Int, 2007, 24(2): 195-213. doi: 10.1080/07420520701283693
    [25]
    HUANG T S, RUOFF P, FJELLDAL P G. Effect of continuous light on daily levels of plasma melatonin and cortisol and expression of clock genes in pineal gland, brain, and liver in atlantic salmon postsmolts[J]. Chronobiol Int, 2010, 27(9/10): 1715-1734.
  • Related Articles

    [1]MA Qiwei, GUO Liang, LIU Bo, LIU Baosuo, ZHU Kecheng, GUO Huayang, ZHANG Nan, YANG Jingwen, ZHANG Dianchang. Effect of taurine on intestinal microbes and immune function in golden pompano (Trachinotus ovatus)[J]. South China Fisheries Science, 2021, 17(2): 87-96. DOI: 10.12131/20200193
    [2]ZHANG Yaqiu, DENG Yiqin, FENG Juan, MAO Can, HU Jianmei, SU Youlu. Construction of knock-out mutant of vhh in Vibrio harveyi and its related biological characteristics analysis[J]. South China Fisheries Science, 2020, 16(2): 43-53. DOI: 10.12131/20190211
    [3]SONG Ling, ZHU Kecheng, GUO Huayang, JIANG Shigui, ZHANG Dianchang. Characterization and function analysis of Elovl4-like elongase gene in golden pompano (Trachinotus ovatus)[J]. South China Fisheries Science, 2019, 15(3): 76-86. DOI: 10.12131/20180272
    [4]FAN Sigang, ZHAO Chao, WANG Pengfei, YAN Lulu, QIU Lihua. Functional analysis of MSTN promoter in scallop (Chalmys nobilis)[J]. South China Fisheries Science, 2019, 15(1): 63-68. DOI: 10.12131/20180182
    [5]LI Yafang, DU Feiyan, WANG Lianggen, GU Yangguang, NING Jiajia. A biological trait approach to assess ecological functions of macrobenthos at different stand age of rehabilitated Sonneratia apetala mangrove[J]. South China Fisheries Science, 2018, 14(3): 10-19. DOI: 10.3969/j.issn.2095-0780.2018.03.002
    [6]RONG Jing, QIU Chaoying, HU Xiao, YANG Xianqing, LI Laihao. Functional properties of glycosylated myofibrillar proteins from purple back flying squids (Symplectoteuthis oualaniensis)[J]. South China Fisheries Science, 2018, 14(1): 68-76. DOI: 10.3969/j.issn.2095-0780.2018.01.009
    [7]LIU Qian, JIANG Shigui, QIU Lihua, HUANG Jianhua, ZHOU Falin, YANG Qibin, JIANG Song, YANG Lishi. Immune function and expression of Toll9 receptor gene from Penaeus monodon[J]. South China Fisheries Science, 2017, 13(5): 63-71. DOI: 10.3969/j.issn.2095-0780.2017.05.009
    [8]MOU Weihao, ZHOU Yan, GENG Yi, WANG Kaiyu, YU Zehui, LI Yajun, HUANG Xiaoli, OU Yangping, CHEN Defang. Effect on main functional genes expression and replication of Chinese giant salamander ranavirus (CGSRV) by RNA interference[J]. South China Fisheries Science, 2017, 13(4): 80-86. DOI: 10.3969/j.issn.2095-0780.2017.04.010
    [9]MO Baolin, QIN Chuanxin, CHEN Pimao, DIAO Yingjiao, YUAN Huarong, LI Xiaoguo, TONG Fei, FENG Xue. Preliminary analysis of structure and function of Daya Bay ecosystem based on Ecopath model[J]. South China Fisheries Science, 2017, 13(3): 9-19. DOI: 10.3969/j.issn.2095-0780.2017.03.002
    [10]ZHANG Chenjie, ZHANG Yanliang, GAO Quanxin, PENG Shiming, SHI Zhaohong. Effect of low salinity stress on antioxidant function in liver of juvenile Nibea albiflora[J]. South China Fisheries Science, 2015, 11(4): 59-64. DOI: 10.3969/j.issn.2095-0780.2015.04.009
  • Cited by

    Periodical cited type(1)

    1. 孟璐,车金远,黄旭雄,罗土炎,鲍宝龙. 溶藻弧菌RseB基因缺失对凡纳滨对虾致病性的影响. 上海海洋大学学报. 2023(04): 681-689 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return