ZHANG Kai, XIE Jun, YU Deguang, WANG Guangjun, GONG Wangbao, LI Zhifei, YU Ermeng, TIAN Jingjing, XIA Yun. Study on food web of grass carp (Ctenopharyngodon idellus) push-water aquaculture ecosystem by stable isotope analysis[J]. South China Fisheries Science, 2020, 16(3): 61-69. DOI: 10.12131/20190217
Citation: ZHANG Kai, XIE Jun, YU Deguang, WANG Guangjun, GONG Wangbao, LI Zhifei, YU Ermeng, TIAN Jingjing, XIA Yun. Study on food web of grass carp (Ctenopharyngodon idellus) push-water aquaculture ecosystem by stable isotope analysis[J]. South China Fisheries Science, 2020, 16(3): 61-69. DOI: 10.12131/20190217

Study on food web of grass carp (Ctenopharyngodon idellus) push-water aquaculture ecosystem by stable isotope analysis

More Information
  • Received Date: October 29, 2019
  • Revised Date: January 06, 2020
  • Accepted Date: February 13, 2020
  • Available Online: February 20, 2020
  • Push-water aquaculture ecosystem is a kind of production mode which integrates recycling aquaculture, high efficiency sewage collection, biological purification and automatic control technology. However, the fate of nutrients in this system is not clear, which results in the waste of food resources and the improper regulation of aquaculture. Therefore, in this study, Ctenopharyngodon idellus push-water aquaculture ecosystem was used as the treatment group, and common pond aquaculture system as the control group. Stable isotope (δ13C, δ15N) technology was used to investigate the bio food composition and system food web structure of the two aquaculture systems. The results show that the stable carbon isotope δ13C were (−25.76±0.23)‰−(−22.26±0.20)‰ and (−25.83±0.24)‰−(−22.38±0.15)‰ in the treatment and control groups, respectively. The stable carbon isotope δ15N were (6.73±0.08)‰−(12.34±0.11)‰ and (6.73±0.08)‰ to (12.14±0.11)‰ in the treatment and control groups, respectively. The stable isotope mixing model reveals that the artificial feed of grass carp and the sediment detritus were the main food sources for consumers in these two groups. To be specific, the artificial feed of grass carp was the main food source for grass carp; the artificial feed of grass carp and the macrozooplankton were the main food source for bighead carp; and the sediment detritus was the main food source for crucian carp. The contribution rate of forage to the food composition of grass carp in push-water aquaculture ecosystem was higher than that in common pond system. Therefore, the adoption of the former can promote the feed intake of cultured organisms and improve the efficiency of feed utilization.

  • [1]
    聂湘平, 王翔, 陈菊芳. 水产养殖与有毒有害污染物残留及其环境影响[J]. 环境科学与技术, 2007, 30(4): 106-110. doi: 10.3969/j.issn.1003-6504.2007.04.038
    [2]
    刘兴国, 刘兆普, 徐皓, 等. 生态工程化循环水池塘养殖系统[J]. 农业工程学报, 2010, 26(11): 237-243. doi: 10.3969/j.issn.1002-6819.2010.11.041
    [3]
    李谷, 吴恢碧, 姚雁鸿, 等. 循环流水型池塘养鱼生态系统设计与构建[J]. 渔业现代化, 2006(4): 6-7, 19. doi: 10.3969/j.issn.1007-9580.2006.04.005
    [4]
    张振东, 肖友红, 范玉华, 等. 池塘工程化循环水养殖模式发展现状简析[J]. 中国水产, 2019(5): 42-45.
    [5]
    PIEDRAHITA R H. Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation[J]. Aquaculture, 2003, 226(1): 35-44.
    [6]
    CRAB R, AVNMELECH Y, DEFOIRDT T, et al. Nitrogen removal techniques in aquaculture for a sustainable production[J]. Aquaculture, 2007, 270: 1-14. doi: 10.1016/j.aquaculture.2007.05.006
    [7]
    奉杰, 田相利, 董双林, 等. 基于EwE模型的三疣梭子蟹、凡纳滨对虾和梭鱼混养系统的能流分析[J]. 中国海洋大学学报 (自然科学版), 2018, 48(4): 24-36.
    [8]
    COHEN J E, BEAVER R A, COUSINS S H, et al. Improving food webs[J]. Ecology, 1993, 74(1): 252. doi: 10.2307/1939520
    [9]
    AKIN S, WINEMILLER K O. Seasonal variation in food web composition and structure in a temperate tidal estuary[J]. Estuar Coast, 2006, 29(4): 552-567. doi: 10.1007/BF02784282
    [10]
    韩东燕, 麻秋云, 薛莹, 等. 应用碳、氮稳定同位素技术分析胶州湾六丝钝尾虾虎鱼的摄食习性[J]. 中国海洋大学学报 (自然科学版), 2016, 46(3): 67-73.
    [11]
    HOBSON K A, WELCH H E. Observations of foraging northern fulmars (Fulmarus glacialis) in the Canadian high arctic[J]. Arctic, 1992, 45(2): 150-153.
    [12]
    WEDCHAPARN O, ZHAO L, FAN Y, et al. Comparison of the trophic niches between two planktivorous fishes in two large lakes using stable isotope analysis[J]. Biochem Syst Ecol, 2016, 68: 148-155. doi: 10.1016/j.bse.2016.07.007
    [13]
    徐姗楠, 陈作志, 黄洪辉, 等. 红树林种植-养殖耦合系统中尼罗罗非鱼的食源分析[J]. 中山大学学报 (自然科学版), 2010, 49(1): 101-106.
    [14]
    FENG J X, GAO Q F, DONG S L, et al. Trophic relationships in a polyculture pond based on carbon and nitrogen stable isotope analyses: a case study in Jinghai Bay, China[J]. Aquaculture, 2014, 428-429: 258-264. doi: 10.1016/j.aquaculture.2014.03.008
    [15]
    GUO K, ZHAO W, WANG S, et al. Study of food web structure and trophic level in the sea ponds of an optimized culture model (jellyfish-shellfish-fish-prawn)[J]. Aquacult Int, 2014, 22(6): 1783-1791. doi: 10.1007/s10499-014-9782-6
    [16]
    FENG J, TIAN X L, DONG S L, et al. Trophic Interaction in a Portunus rituberculatus polyculture ecosystem based on carbon and nitrogen stable isotope analysis[J]. J Ocean Univ China, 2018, 17(6): 1432-1440. doi: 10.1007/s11802-018-3655-y
    [17]
    ANDERSON R K, PARKER P L, LAWRENCE A. A 13C/12C tracer study of the utilization of presented feed by a commercially important shrimp Penaeus vannamei in a pond grow out system[J]. J World Aquacult Soc, 2007, 18(3): 148-155.
    [18]
    POST D M. Using stable isotopes to estimate trophic position: models, methods, and assumptions[J]. Ecology, 2002, 83(3): 703-718. doi: 10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
    [19]
    金波昌. 池塘养殖刺参食物来源的稳定同位素法研究[D]. 青岛: 中国海洋大学, 2010: 64-65.
    [20]
    FRANCE R L. Differentiation between littoral and Pelagic food webs in lakes using stable carbon isotopes[J]. Limnol Oceanogr, 1995, 40(7): 1310-1313. doi: 10.4319/lo.1995.40.7.1310
    [21]
    LEGGETT M, SERVOS M, HESSLEIN R, et al. Biogeochemical influences on the carbon isotope signatures of Lake Ontario biota[J]. Can J Fish Aquat Sci, 1999, 56(11): 2211-2218. doi: 10.1139/f99-151
    [22]
    FONTUGNE M R, JOUANNEAU J M. Modulation of the particulate organic carbon flux to the ocean by a macrotidal estuary: evidence from measurements of carbon isotopes in organic matter from the Gironde system[J]. Estuar Coastal Shelf S, 1987, 24(3): 377-387. doi: 10.1016/0272-7714(87)90057-6
    [23]
    EMERSON S, HEDGES J I. Processes controlling the organic carbon content of open ocean sediments[J]. Paleoceanography, 1988, 3(5): 621-634. doi: 10.1029/PA003i005p00621
    [24]
    BOUTTON T W. Stable carbon isotope ratios of natural materials: II. Atmospheric, terrestrial, marine and freshwater environments[M]//Carbon Isotope Techniques. San Diego: Academic Press Inc., 1991: 173-185.
    [25]
    PATERSON A W, WHITFIELD A K. A stable carbon isotope study of the food-web in a freshwater-deprived South African Estuary, with particular emphasis on the ichthyofauna[J]. Estuar Coastal Shelf Sci, 1997, 45(6): 705-715. doi: 10.1006/ecss.1997.0243
    [26]
    YOSHIOKA T, WADA E, HAYASHI H. A stable isotope study on seasonal food web dynamics in a eutrophic lake[J]. Ecology, 1994, 75(3): 835. doi: 10.2307/1941739
    [27]
    WANG X N, WU Y, JIANG Z J, et al. Quantifying aquaculture-derived dissolved organic matter in the mesocosms of Sanggou Bay using excitation-emission matrix spectra and parallel factor analysis[J]. J World Aquacult Soc, 2017, 48(6): 909-926. doi: 10.1111/jwas.12409
    [28]
    皮坤, 张敏, 李庚辰, 等. 人工饵料对主养黄颡鱼和主养草鱼池塘沉降颗粒有机质贡献的同位素示踪[J]. 水生生物学报, 2014, 38(5): 929-937. doi: 10.7541/2014.138
    [29]
    李学梅, 朱永久, 王旭歌, 等. 稳定同位素技术分析不同养殖方式下鳙饵料的贡献率[J]. 中国水产科学, 2017, 24(2): 278-283.
    [30]
    王赛. 东江鱼类食物网结构与生态系统能流模式研究[D]. 广州: 暨南大学, 2015: 93-100.
    [31]
    谢青, 徐勤勤, 王永敏, 等. 三峡水库与长寿湖水库鱼类碳、氮稳定同位素特征及营养级的比较[J]. 湖泊科学, 2019, 31(3): 231-239.
    [32]
    CAUT S, ANGULO E, COURCHAMP F. Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction[J]. J Appl Ecol, 2009, 46(2): 443-453. doi: 10.1111/j.1365-2664.2009.01620.x
    [33]
    ZHANG K, TIAN X L, DONG S L, et al. An experimental study on the budget of organic carbon in polyculture systems of swimming crab with white shrimp and short-necked clam[J]. Aquaculture, 2016, 451: 58-64. doi: 10.1016/j.aquaculture.2015.08.029
    [34]
    王龙升, 周琼, 谢从新, 等. 两种营养源对主养草鱼池塘浮游生物群落结构与碳/氮转化的影响[J]. 水产学报, 2017, 41(8): 1286-1297.
    [35]
    ZHANG K, XIE J, YU D G, et al. A comparative study on the budget of nitrogen and phosphorus in polyculture systems of snakehead with bighead carp[J]. Aquaculture, 2018, 483: 69-75. doi: 10.1016/j.aquaculture.2017.10.004
    [36]
    张凯, 李志斐, 谢骏, 等. 生态基对大口黑鲈池塘养殖系统水质及能量收支的影响研究[J]. 南方水产科学, 2018, 14(5): 53-59.
    [37]
    ZHOU B, DONG S L, WANG F. Trophic structure and energy fluxes in a grass carp (Ctenopharyngodon idellus) cultured pond ecosystem[J]. Aquacult Int, 2015, 23(5): 1313-1324. doi: 10.1007/s10499-015-9886-7
    [38]
    LINDEMAN R L. The trophic-dynamic aspect of ecology[J]. Ecology, 1942, 23(4): 399-418. doi: 10.2307/1930126
    [39]
    MAYER L M, KEIL R G, MACKO S A, et al. Importance of suspended particulate in riverine delivery of bioavailable nitrogen to coastal zones[J]. Global Biogeochem Cy, 1998, 12(4): 573-579. doi: 10.1029/98GB02267
    [40]
    CROMEY C J, NICKELL T D, BLACK K D. Depomed modeling the deposition and biological effects of waste solids from marine cage farms[J]. Aquaculture, 2002, 214: 211-239. doi: 10.1016/S0044-8486(02)00368-X
    [41]
    PUCHER J, FOCKEN U. Uptake of nitrogen from natural food into fish in differently managed polyculture ponds using 15N as tracer[J]. Aquacult Int, 2016, 25(1): 87-105.
  • Related Articles

    [1]CHEN Feng, LI Guanglüe, CHEN Yanyun, WU Xueping, ZHU Jiajie. Analysis of nutritional composition and quality of muscles in Hemibagrus guttatus, H. macropterus and H. pluriradiatus[J]. South China Fisheries Science. DOI: 10.12131/20240277
    [2]ZHOU Shengjie, YANG Rui, YU Gang, MA Zhenhua, MENG Xiangjun. Muscle composition determination and nutrition evaluation of three tuna species near Meiji Reef[J]. South China Fisheries Science, 2021, 17(2): 51-59. DOI: 10.12131/20200229
    [3]SHEN Yingying, WU Yanyan, LI Laihao, DENG Shanggui. Nutritional components and safety evaluation of fermented mandarin fish[J]. South China Fisheries Science, 2020, 16(3): 103-112. DOI: 10.12131/2090247
    [4]TONG Ling, JIN Yi, XU Kunhua, DAI Zhiyuan. Analysis of nutritional components in back muscle of skipjacks[J]. South China Fisheries Science, 2014, 10(5): 51-59. DOI: 10.3969/j.issn.2095-0780.2014.05.008
    [5]LI Haifeng, CHI Changfeng, WU Changwen. Evaluation of nutritional composition in white egg membrane from cultured Sepiella maindroni[J]. South China Fisheries Science, 2014, 10(3): 86-91. DOI: 10.3969/j.issn.2095-0780.2014.03.013
    [6]HUANG Yanqing, GONG Yangyang, LU Jianxue, HUANG Hongliang, GAO Lujiao. Evaluation of nutritional quality of Antarctic krill meal by different processing methods[J]. South China Fisheries Science, 2013, 9(6): 58-65. DOI: 10.3969/j.issn.2095-0780.2013.06.010
    [7]LIU Banghui, WANG Guangjun, YU Ermeng, XIE Jun, YU Deguang, ANG Haiying, GONG Wangbao. Comparison and evaluation of nutrition composition in muscle of grass carp Ctenopharyngodon idellus fed with broad bean and common compound feed[J]. South China Fisheries Science, 2011, 7(6): 58-65. DOI: 10.3969/j.issn.2095-0780.2011.06.010
    [8]WANG Yin, LIU Shuji, SU Yongchang, HUANG Yu, WU Chengye. Morphological analysis and nutrition evaluation of Paphia undulate[J]. South China Fisheries Science, 2011, 7(6): 19-25. DOI: 10.3969/j.issn.2095-0780.2011.06.004
    [9]LI Guo-zhi, LU Shao-xiong, YAN Da-wei, ZHAO Gui-ying, LI Ming-li. Analysis of biochemical components in muscle and nutritional evaluation of Schizothorax yunnanensis[J]. South China Fisheries Science, 2009, 5(2): 56-62. DOI: 10.3969/j.issn.1673-2227.2009.02.010
    [10]LI Zufu, FU Qianqian, ZHANG Yishun. An analysis of the nutritive composition and the contents of amino acids in muscle of Epinephelus lanceol[J]. South China Fisheries Science, 2008, 4(5): 61-64.
  • Cited by

    Periodical cited type(18)

    1. 孔丽芳,莫飞龙,韦玲静,甘宝江,滕忠作,卢飞麟. 野生马口鱼基本营养成分分析. 水产养殖. 2024(02): 17-22 .
    2. 赵何勇,温守欧,韦玲静,甘宝江,卢玉典,莫飞龙. 三角鲤肌肉营养成分及品质评价. 养殖与饲料. 2024(03): 1-6 .
    3. 刘龙龙,罗鸣,刘洪涛,陈傅晓,韩丽娜. 不同规格野生黄鳍金枪鱼肌肉营养分析与评价. 渔业科学进展. 2024(03): 258-267 .
    4. 张凯,张麟,彭凌风,陈鑫,刘合刚,胡志刚. 基于性别差异的少棘巨蜈蚣蛋白组和转录组联合分析. 时珍国医国药. 2024(04): 892-898 .
    5. 钟传艳,彭顺芳,姜雨杰,龙晓文. 人工养殖雌雄光唇裂腹鱼形态学指数和肌肉营养成分的比较. 黑龙江畜牧兽医. 2024(16): 109-115 .
    6. 黄逸中,张思琪,颉志刚. 黄金鲈肌肉氨基酸组成与性别、体重、性腺系数间的关联性分析. 浙江农业科学. 2024(10): 2486-2494 .
    7. 招志杰,韦玲静,刘康,卢玉典,张盛,莫飞龙,杨宾兰. 乌原鲤肌肉营养成分分析与品质评价. 贵州农业科学. 2024(10): 86-92 .
    8. 鲁翠云,罗鸣,郑先虎,刘龙龙,张国庆,刘天奇,陈有铭. 用微卫星标记分析卵形鲳鲹两个繁育群体的遗传结构. 水产学杂志. 2024(05): 28-36+44 .
    9. 王世会,赵志刚,罗亮,张瑞,郭坤,徐伟. 滨海氯化物型盐碱水池塘养殖中华绒螯蟹营养品质分析. 海洋渔业. 2023(05): 579-593 .
    10. 董伟超,王少平,黄莹洁,刘鑫,李喆,张加余,代龙. 基于“化学成分-药效”对比分析的雄土鳖虫成药性评价研究. 时珍国医国药. 2023(10): 2494-2498 .
    11. 卢军浩,李兰兰,权金强,赵桂研,孙军,蒋常平,刘哲. 小瓜虫对虹鳟组织病理变化及TLR信号通路基因表达影响. 农业生物技术学报. 2022(04): 739-750 .
    12. 钟智明,陈家宇,张静,汤保贵,于非非,赖文琪,朱洁雄. 基于代谢组学分析光强胁迫对卵形鲳鲹代谢的影响. 农业生物技术学报. 2022(04): 751-761 .
    13. 常淮阳,史红专,邹洁,王羿,郭丽媛,刘水新. 雌雄地鳖内在品质及营养成分差异研究. 中国中药杂志. 2022(12): 3192-3197 .
    14. 徐永江,王开杰,姜燕,崔爱君,柳学周,方璐,王滨. 三种鰤属鱼类肌肉质构特性及营养成分比较分析. 中国水产科学. 2022(07): 1022-1032 .
    15. 张进伟,胡晓,陈胜军,赵永强,吴燕燕,王悦齐,潘创,王迪. 腌制风干过程中卵形鲳鲹鱼肉性质、蛋白质氧化及游离氨基酸的变化. 食品科学. 2022(18): 272-278 .
    16. 罗辉,陈李婷,敬庭森,孙文波,李哲,周明瑞,覃俊奇,杜雪松,文露婷,潘贤辉,周康奇,樊荟慧,叶华,宾石玉,林勇. 田螺科四种螺的肌肉主要营养成分. 水产学报. 2022(11): 2177-2185 .
    17. 张进伟,胡晓,陈胜军,吴燕燕,王悦齐,潘创,黄卉. 腌制方式对卵形鲳鲹理化指标及其挥发性风味成分的影响. 水产学报. 2021(07): 1066-1079 .
    18. 喻亚丽,李清,何力,甘金华,毛涛,李佩,陈见,孙艳红,魏辉杰,王贵英. 2种产卵类型翘嘴鲌肌肉营养成分分析与评价. 南方农业学报. 2021(12): 3311-3319 .

    Other cited types(9)

Catalog

    Article views (4259) PDF downloads (68) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return