Citation: | ZHANG Kai, XIE Jun, YU Deguang, WANG Guangjun, GONG Wangbao, LI Zhifei, YU Ermeng, TIAN Jingjing, XIA Yun. Study on food web of grass carp (Ctenopharyngodon idellus) push-water aquaculture ecosystem by stable isotope analysis[J]. South China Fisheries Science, 2020, 16(3): 61-69. DOI: 10.12131/20190217 |
Push-water aquaculture ecosystem is a kind of production mode which integrates recycling aquaculture, high efficiency sewage collection, biological purification and automatic control technology. However, the fate of nutrients in this system is not clear, which results in the waste of food resources and the improper regulation of aquaculture. Therefore, in this study, Ctenopharyngodon idellus push-water aquaculture ecosystem was used as the treatment group, and common pond aquaculture system as the control group. Stable isotope (δ13C, δ15N) technology was used to investigate the bio food composition and system food web structure of the two aquaculture systems. The results show that the stable carbon isotope δ13C were (−25.76±0.23)‰−(−22.26±0.20)‰ and (−25.83±0.24)‰−(−22.38±0.15)‰ in the treatment and control groups, respectively. The stable carbon isotope δ15N were (6.73±0.08)‰−(12.34±0.11)‰ and (6.73±0.08)‰ to (12.14±0.11)‰ in the treatment and control groups, respectively. The stable isotope mixing model reveals that the artificial feed of grass carp and the sediment detritus were the main food sources for consumers in these two groups. To be specific, the artificial feed of grass carp was the main food source for grass carp; the artificial feed of grass carp and the macrozooplankton were the main food source for bighead carp; and the sediment detritus was the main food source for crucian carp. The contribution rate of forage to the food composition of grass carp in push-water aquaculture ecosystem was higher than that in common pond system. Therefore, the adoption of the former can promote the feed intake of cultured organisms and improve the efficiency of feed utilization.
[1] |
聂湘平, 王翔, 陈菊芳. 水产养殖与有毒有害污染物残留及其环境影响[J]. 环境科学与技术, 2007, 30(4): 106-110. doi: 10.3969/j.issn.1003-6504.2007.04.038
|
[2] |
刘兴国, 刘兆普, 徐皓, 等. 生态工程化循环水池塘养殖系统[J]. 农业工程学报, 2010, 26(11): 237-243. doi: 10.3969/j.issn.1002-6819.2010.11.041
|
[3] |
李谷, 吴恢碧, 姚雁鸿, 等. 循环流水型池塘养鱼生态系统设计与构建[J]. 渔业现代化, 2006(4): 6-7, 19. doi: 10.3969/j.issn.1007-9580.2006.04.005
|
[4] |
张振东, 肖友红, 范玉华, 等. 池塘工程化循环水养殖模式发展现状简析[J]. 中国水产, 2019(5): 42-45.
|
[5] |
PIEDRAHITA R H. Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation[J]. Aquaculture, 2003, 226(1): 35-44.
|
[6] |
CRAB R, AVNMELECH Y, DEFOIRDT T, et al. Nitrogen removal techniques in aquaculture for a sustainable production[J]. Aquaculture, 2007, 270: 1-14. doi: 10.1016/j.aquaculture.2007.05.006
|
[7] |
奉杰, 田相利, 董双林, 等. 基于EwE模型的三疣梭子蟹、凡纳滨对虾和梭鱼混养系统的能流分析[J]. 中国海洋大学学报 (自然科学版), 2018, 48(4): 24-36.
|
[8] |
COHEN J E, BEAVER R A, COUSINS S H, et al. Improving food webs[J]. Ecology, 1993, 74(1): 252. doi: 10.2307/1939520
|
[9] |
AKIN S, WINEMILLER K O. Seasonal variation in food web composition and structure in a temperate tidal estuary[J]. Estuar Coast, 2006, 29(4): 552-567. doi: 10.1007/BF02784282
|
[10] |
韩东燕, 麻秋云, 薛莹, 等. 应用碳、氮稳定同位素技术分析胶州湾六丝钝尾虾虎鱼的摄食习性[J]. 中国海洋大学学报 (自然科学版), 2016, 46(3): 67-73.
|
[11] |
HOBSON K A, WELCH H E. Observations of foraging northern fulmars (Fulmarus glacialis) in the Canadian high arctic[J]. Arctic, 1992, 45(2): 150-153.
|
[12] |
WEDCHAPARN O, ZHAO L, FAN Y, et al. Comparison of the trophic niches between two planktivorous fishes in two large lakes using stable isotope analysis[J]. Biochem Syst Ecol, 2016, 68: 148-155. doi: 10.1016/j.bse.2016.07.007
|
[13] |
徐姗楠, 陈作志, 黄洪辉, 等. 红树林种植-养殖耦合系统中尼罗罗非鱼的食源分析[J]. 中山大学学报 (自然科学版), 2010, 49(1): 101-106.
|
[14] |
FENG J X, GAO Q F, DONG S L, et al. Trophic relationships in a polyculture pond based on carbon and nitrogen stable isotope analyses: a case study in Jinghai Bay, China[J]. Aquaculture, 2014, 428-429: 258-264. doi: 10.1016/j.aquaculture.2014.03.008
|
[15] |
GUO K, ZHAO W, WANG S, et al. Study of food web structure and trophic level in the sea ponds of an optimized culture model (jellyfish-shellfish-fish-prawn)[J]. Aquacult Int, 2014, 22(6): 1783-1791. doi: 10.1007/s10499-014-9782-6
|
[16] |
FENG J, TIAN X L, DONG S L, et al. Trophic Interaction in a Portunus rituberculatus polyculture ecosystem based on carbon and nitrogen stable isotope analysis[J]. J Ocean Univ China, 2018, 17(6): 1432-1440. doi: 10.1007/s11802-018-3655-y
|
[17] |
ANDERSON R K, PARKER P L, LAWRENCE A. A 13C/12C tracer study of the utilization of presented feed by a commercially important shrimp Penaeus vannamei in a pond grow out system[J]. J World Aquacult Soc, 2007, 18(3): 148-155.
|
[18] |
POST D M. Using stable isotopes to estimate trophic position: models, methods, and assumptions[J]. Ecology, 2002, 83(3): 703-718. doi: 10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
|
[19] |
金波昌. 池塘养殖刺参食物来源的稳定同位素法研究[D]. 青岛: 中国海洋大学, 2010: 64-65.
|
[20] |
FRANCE R L. Differentiation between littoral and Pelagic food webs in lakes using stable carbon isotopes[J]. Limnol Oceanogr, 1995, 40(7): 1310-1313. doi: 10.4319/lo.1995.40.7.1310
|
[21] |
LEGGETT M, SERVOS M, HESSLEIN R, et al. Biogeochemical influences on the carbon isotope signatures of Lake Ontario biota[J]. Can J Fish Aquat Sci, 1999, 56(11): 2211-2218. doi: 10.1139/f99-151
|
[22] |
FONTUGNE M R, JOUANNEAU J M. Modulation of the particulate organic carbon flux to the ocean by a macrotidal estuary: evidence from measurements of carbon isotopes in organic matter from the Gironde system[J]. Estuar Coastal Shelf S, 1987, 24(3): 377-387. doi: 10.1016/0272-7714(87)90057-6
|
[23] |
EMERSON S, HEDGES J I. Processes controlling the organic carbon content of open ocean sediments[J]. Paleoceanography, 1988, 3(5): 621-634. doi: 10.1029/PA003i005p00621
|
[24] |
BOUTTON T W. Stable carbon isotope ratios of natural materials: II. Atmospheric, terrestrial, marine and freshwater environments[M]//Carbon Isotope Techniques. San Diego: Academic Press Inc., 1991: 173-185.
|
[25] |
PATERSON A W, WHITFIELD A K. A stable carbon isotope study of the food-web in a freshwater-deprived South African Estuary, with particular emphasis on the ichthyofauna[J]. Estuar Coastal Shelf Sci, 1997, 45(6): 705-715. doi: 10.1006/ecss.1997.0243
|
[26] |
YOSHIOKA T, WADA E, HAYASHI H. A stable isotope study on seasonal food web dynamics in a eutrophic lake[J]. Ecology, 1994, 75(3): 835. doi: 10.2307/1941739
|
[27] |
WANG X N, WU Y, JIANG Z J, et al. Quantifying aquaculture-derived dissolved organic matter in the mesocosms of Sanggou Bay using excitation-emission matrix spectra and parallel factor analysis[J]. J World Aquacult Soc, 2017, 48(6): 909-926. doi: 10.1111/jwas.12409
|
[28] |
皮坤, 张敏, 李庚辰, 等. 人工饵料对主养黄颡鱼和主养草鱼池塘沉降颗粒有机质贡献的同位素示踪[J]. 水生生物学报, 2014, 38(5): 929-937. doi: 10.7541/2014.138
|
[29] |
李学梅, 朱永久, 王旭歌, 等. 稳定同位素技术分析不同养殖方式下鳙饵料的贡献率[J]. 中国水产科学, 2017, 24(2): 278-283.
|
[30] |
王赛. 东江鱼类食物网结构与生态系统能流模式研究[D]. 广州: 暨南大学, 2015: 93-100.
|
[31] |
谢青, 徐勤勤, 王永敏, 等. 三峡水库与长寿湖水库鱼类碳、氮稳定同位素特征及营养级的比较[J]. 湖泊科学, 2019, 31(3): 231-239.
|
[32] |
CAUT S, ANGULO E, COURCHAMP F. Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction[J]. J Appl Ecol, 2009, 46(2): 443-453. doi: 10.1111/j.1365-2664.2009.01620.x
|
[33] |
ZHANG K, TIAN X L, DONG S L, et al. An experimental study on the budget of organic carbon in polyculture systems of swimming crab with white shrimp and short-necked clam[J]. Aquaculture, 2016, 451: 58-64. doi: 10.1016/j.aquaculture.2015.08.029
|
[34] |
王龙升, 周琼, 谢从新, 等. 两种营养源对主养草鱼池塘浮游生物群落结构与碳/氮转化的影响[J]. 水产学报, 2017, 41(8): 1286-1297.
|
[35] |
ZHANG K, XIE J, YU D G, et al. A comparative study on the budget of nitrogen and phosphorus in polyculture systems of snakehead with bighead carp[J]. Aquaculture, 2018, 483: 69-75. doi: 10.1016/j.aquaculture.2017.10.004
|
[36] |
张凯, 李志斐, 谢骏, 等. 生态基对大口黑鲈池塘养殖系统水质及能量收支的影响研究[J]. 南方水产科学, 2018, 14(5): 53-59.
|
[37] |
ZHOU B, DONG S L, WANG F. Trophic structure and energy fluxes in a grass carp (Ctenopharyngodon idellus) cultured pond ecosystem[J]. Aquacult Int, 2015, 23(5): 1313-1324. doi: 10.1007/s10499-015-9886-7
|
[38] |
LINDEMAN R L. The trophic-dynamic aspect of ecology[J]. Ecology, 1942, 23(4): 399-418. doi: 10.2307/1930126
|
[39] |
MAYER L M, KEIL R G, MACKO S A, et al. Importance of suspended particulate in riverine delivery of bioavailable nitrogen to coastal zones[J]. Global Biogeochem Cy, 1998, 12(4): 573-579. doi: 10.1029/98GB02267
|
[40] |
CROMEY C J, NICKELL T D, BLACK K D. Depomed modeling the deposition and biological effects of waste solids from marine cage farms[J]. Aquaculture, 2002, 214: 211-239. doi: 10.1016/S0044-8486(02)00368-X
|
[41] |
PUCHER J, FOCKEN U. Uptake of nitrogen from natural food into fish in differently managed polyculture ponds using 15N as tracer[J]. Aquacult Int, 2016, 25(1): 87-105.
|