Huijuan WANG, Wenbo ZHANG, Honghui HUANG, Shannan XU, Huaxue LIU. Trophic structure of fishery organism assemblage in Daya Bay based on carbon and nitrogen stable isotope analysis[J]. South China Fisheries Science, 2021, 17(5): 101-109. DOI: 10.12131/20210005
Citation: Huijuan WANG, Wenbo ZHANG, Honghui HUANG, Shannan XU, Huaxue LIU. Trophic structure of fishery organism assemblage in Daya Bay based on carbon and nitrogen stable isotope analysis[J]. South China Fisheries Science, 2021, 17(5): 101-109. DOI: 10.12131/20210005

Trophic structure of fishery organism assemblage in Daya Bay based on carbon and nitrogen stable isotope analysis

More Information
  • Received Date: January 04, 2021
  • Revised Date: March 23, 2021
  • Accepted Date: April 25, 2021
  • Available Online: May 07, 2021
  • According to the biological survey of bottom trawl fishery conducted in Daya Bay in the summer of 2017 and the winter of 2018, we analyzed the basic characteristics of the stable isotope of carbon and nitrogen (δ13C and δ15N) in fishery organisms by using δ13C and δ15N techniques. In addition, we constructed a continuous trophic level spectrum, and discussed the differences in the nutritional structure of fishery organisms in different seasons. The results show that the range of (δ13C and δ15N) of main fishery species in Daya Bay were −19.66‰−15.19‰ [Average: (−17.26±0.86)‰] and 11.63‰−16.01‰ [Average: (13.59±0.96)‰], respectively. We used the average δ15N of small zooplankton as a reference to construct the trophic level spectrum of fishery organisms, and found that the trophic level of fishery organisms in Daya Bay ranged from 2.99 to 4.28. The trophic level of fish had the widest span and a more complex diet. We calculated seven quantitative community indices of trophic structure of macrobenthos by using the SIBER model, and found that some organisms shared the preys, and there was a phenomenon of niche overlap. In addition, the community nutrition redundancy in summer was lower than that in winter.
  • [1]
    BODA A, ALVAREZ-OSSORIO M T, CUNHA M E, et al. Stable nitrogen isotope studies of the pelagic food web on the Atlantic shelf of the Iberian Peninsula[J]. Prog Oceanogr, 2007, 74(2/3): 115-131.
    [2]
    宁加佳, 杜飞雁, 王雪辉, 等. 南沙群岛西南部陆架区底层鱼类营养结构研究[J]. 海洋与湖沼, 2016, 47(2): 468-475.
    [3]
    郭承秧, 杨志, 陈建芳, 等. 基于碳、氮稳定同位素的雅浦海沟底栖生物食物来源和营养级初探[J]. 海洋学报, 2018, 40(10): 51-60.
    [4]
    黄佳兴, 龚玉艳, 徐姗楠, 等. 南海中西部渔场主要渔业生物碳氮稳定同位素特征[J]. 热带海洋学报, 2019, 38(1): 76-84.
    [5]
    VINAGRE C, MAGUAS C, CABRAL H N, et al. Food web structure of the coastal area adjacent to the Tagus estuary revealed by stable isotope analysis[J]. J Sea Res, 2012, 67(1): 21-26. doi: 10.1016/j.seares.2011.09.003
    [6]
    麻秋云, 韩东燕, 刘贺, 等. 应用稳定同位素技术构建胶州湾食物网的连续营养谱[J]. 生态学报, 2015, 35(21): 7207-7218.
    [7]
    张硕, 谢斌, 符小明, 等. 应用稳定同位素技术对海州湾拖网渔获物营养级的研究[J]. 海洋环境科学, 2016, 35(4): 507-511.
    [8]
    张文博, 黄洪辉, 李纯厚, 等. 华南典型海湾主要渔业生物碳氮稳定同位素研究[J]. 南方水产科学, 2019, 15(5): 9-14. doi: 10.12131/20180173
    [9]
    陈丕茂, 袁华荣, 贾晓平, 等. 大亚湾杨梅坑人工鱼礁区渔业资源变动初步研究[J]. 南方水产科学, 2013, 9(5): 100-108. doi: 10.3969/j.issn.2095-0780.2013.05.016
    [10]
    王雪辉, 杜飞雁, 邱永松, 等. 1980—2007年大亚湾鱼类物种多样性、区系特征和数量变化[J]. 应用生态学报, 2010, 21(9): 2403-2410.
    [11]
    柯志新, 黄良民, 徐军, 等. 大亚湾冬季不同粒级浮游生物的氮稳定同位素特征及其与生物量的关系[J]. 生态学报, 2012, 32(22): 7102-7108.
    [12]
    王友绍, 王肇鼎, 黄良民. 近20年来大亚湾生态环境的变化及其发展趋势[J]. 热带海洋学报, 2004, 23(5): 85-95. doi: 10.3969/j.issn.1009-5470.2004.05.012
    [13]
    张波, 袁伟, 戴芳群. 应用稳定同位素技术研究崂山湾夏季鱼类群落的摄食生态[J]. 水产学报, 2016, 40(4): 585-594.
    [14]
    魏虎进, 朱小明, 纪雅宁, 等. 基于稳定同位素技术的象山港海洋牧场区食物网基础与营养级的研究[J]. 应用海洋学学报, 2013, 32(2): 250-257. doi: 10.3969/J.ISSN.2095-4972.2013.02.015
    [15]
    POST D M. Using stable isotopes to estimate trophic position: models, methods, and assumptions[J]. Ecology, 2002, 83(3): 703-718.
    [16]
    JACKSON A L, INGER R, PARNELL A C, et al. Comparing isotopic niche widths among and within communities: SIBER-stable isotope Bayesian ellipses in R[J]. J Anim Ecol, 2011, 80(3): 595-602. doi: 10.1111/j.1365-2656.2011.01806.x
    [17]
    JAKE V M, FETZER W W. Global patterns of aquatic food chain length[J]. Oikos, 2007, 116(8): 1378-1388. doi: 10.1111/j.0030-1299.2007.16036.x
    [18]
    LOGAN J M, LUTCAVAGE M E. Assessment of trophic dynamics of cephalopods and large pelagic fishes in the central North Atlantic Ocean using stable isotope analysis[J]. Deep-Sea Res II, 2013, 95: 63-73. doi: 10.1016/j.dsr2.2012.07.013
    [19]
    SHERWOOD G D, ROSE G A. Stable isotope analysis of some representative fish and invertebrates of the Newfoundland and Labrador continental shelf food web[J]. Estuar Coast Shelf Sci, 2005, 63(4): 537-549. doi: 10.1016/j.ecss.2004.12.010
    [20]
    朱文涛, 秦传新, 马鸿梅, 等. 大亚湾珊瑚礁生态系统简化食物网的稳定同位素[J]. 水产学报, 2020, 44(7): 1112-1123.
    [21]
    QIN C X, CHEN P M, SARÀ G, et al. Ecological implications of purple sea urchin (Heliocidaris crassispina, Agassiz, 1864) enhancement on the coastal benthic food web: evidence from stable isotope analysis[J]. Mar Environ Res, 2020, 158: 104957. doi: 10.1016/j.marenvres.2020.104957
    [22]
    石焱, 何雄波, 李军, 等. 基于稳定同位素方法的闽江口常见鱼类群落营养结构的季节性变化[J]. 应用生态学报, 2018, 29(10): 3457-3463.
    [23]
    VIZZINI S, MAZZOLA A. Stable isotopes and trophic positions of littoral fishes from a Mediterranean marine protected area[J]. Environ Biol Fish, 2009, 84(1): 13-25. doi: 10.1007/s10641-008-9381-3
    [24]
    曾艳艺, 赖子尼, 杨婉玲, 等. 珠江河口渔业生物稳定同位素营养级分析[J]. 生态学杂志, 2018, 37(1): 194-202.
    [25]
    DAVID M P, GAKU T. Proximate structural mechanisms for variation in food-chain length[J]. Oikos, 2007, 116(5): 775-782.
    [26]
    白怀宇, 王玉堃, 张廷廷, 等. 基于碳、氮稳定同位素研究黄海及东海北部主要鱼类的营养级和食性[J]. 渔业科学进展, 2021, 42(2): 10-17.
    [27]
    闫光松, 张涛, 赵峰, 等. 基于稳定同位素技术对长江口主要渔业生物营养级的研究[J]. 生态学杂志, 2016, 35(11): 3131-3136.
    [28]
    高春霞, 戴小杰, 田思泉, 等. 基于稳定同位素技术的浙江南部近海主要渔业生物营养级[J]. 中国水产科学, 2020, 27(4): 438-453.
    [29]
    沈忱, 李军, 康斌. 闽江口鱼类群落营养结构的探究[J]. 集美大学学报 (自然科学版), 2020, 25(1): 8-15.
    [30]
    袁华荣, 陈丕茂, 秦传新, 等. 南海柘林湾鱼类群落结构季节变动的研究[J]. 南方水产科学, 2017, 13(2): 26-35. doi: 10.3969/j.issn.2095-0780.2017.02.004
    [31]
    WU M L, WANG Y S. Using chemometrics to evaluate anthropogenic effects in Daya Bay, China[J]. Estuar Coast Shelf Sci, 2007, 72(4): 732-742. doi: 10.1016/j.ecss.2006.11.032
    [32]
    BEARHOP S, ADAMS C E, WALDRON S, et al. Determining trophic niche width: a novel approach using stable isotope analysis[J]. J Anim Ecol, 2004, 73(5): 1007-1012. doi: 10.1111/j.0021-8790.2004.00861.x
    [33]
    孔业富, 吴忠鑫, 颜云榕, 等. 基于碳氮稳定同位素的南海中西部海域春季中上层渔业生物群落营养结构[J]. 应用生态学报, 2020, 31(10): 3559-3567.
    [34]
    LAYMAN C A, ARRINGTON D A, MONTAA C G, et al. Can stable isotope ratios provide for community-wide measures of trophic structure?[J]. Ecology, 2007, 88(1): 42-48. doi: 10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2
    [35]
    PAULY D, CHRISTENSEN V, DALSGAARD J, et al. Fishing down marine food webs[J]. Science, 1998, 279(6835): 860-863.
    [36]
    纪炜炜, 李圣法, 陈雪忠, 等. 基于稳定同位素方法的东海北部及其邻近水域主要游泳动物营养结构变化[J]. 海洋渔业, 2015, 37(6): 494-500. doi: 10.3969/j.issn.1004-2490.2015.06.002

Catalog

    Article views (1048) PDF downloads (72) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return