HUANG Xiaoshuai, XU Yu, HU Xiaojuan, XU Wujie, SU Haochang, WEN Guoliang, YANG Keng, CAO Yucheng. Genetic diversity analysis of first filial generation of seven introduced Litopenaeus vannamei populations using microsatellite DNA markers[J]. South China Fisheries Science, 2019, 15(1): 54-62. DOI: 10.12131/20180135
Citation: HUANG Xiaoshuai, XU Yu, HU Xiaojuan, XU Wujie, SU Haochang, WEN Guoliang, YANG Keng, CAO Yucheng. Genetic diversity analysis of first filial generation of seven introduced Litopenaeus vannamei populations using microsatellite DNA markers[J]. South China Fisheries Science, 2019, 15(1): 54-62. DOI: 10.12131/20180135

Genetic diversity analysis of first filial generation of seven introduced Litopenaeus vannamei populations using microsatellite DNA markers

More Information
  • Received Date: June 19, 2018
  • Revised Date: September 04, 2018
  • Accepted Date: October 09, 2018
  • Available Online: December 04, 2018
  • Microsatellite DNA markers were used to assess the genetic diversity of first filial generation of seven introduced Litopenaeus vannamei populations, named TH-A1, TH-A2, TH-B, US-C1, US-C2, US-C3 and US-C4, respectively. The results show that the seven populations had varying polymorphism at 12 microsatellite loci, with the mean allele number (Na) ranging from 3.333 to 6.167. The mean values of expected (He) and observed (Ho) heterozygosity were 0.477–0.670 and 0.370–0.505, respectively. The polymorphic information content (PIC) for each population varied from 0.414 to 0.623. For Hardy-Weinberg equilibrium test, 44 out of 88 exhibited significant deviation (P<0.05), which corresponded with the fact thatHe was slightly higher than Ho. Cluster analysis shows that the seven populations were clustered into three branches (TH-A1; US-C1, US-C2 and TH-A2; the rest). It is indicated that the genetic characteristics vary in different cultured populations of L. vannamei. The results provide references for further exploration of relevance between genetic characteristics and practical performance of L. vannamei.

  • [1]
    王兴强, 马甡, 董双林. 凡纳滨对虾生物学及养殖生态学研究进展[J]. 海洋湖沼通报, 2004(4): 94-100. doi: 10.3969/j.issn.1003-6482.2004.04.016
    [2]
    农业部渔业渔政管理局. 2017中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2017: 22-61.
    [3]
    童馨, 龚世圆, 喻达辉, 等. 凡纳滨对虾(Litopenaeus vannanamei)不同世代养殖群体的遗传多样性分析[J]. 海洋与湖沼, 2009, 40(2): 214-220. doi: 10.3321/j.issn:0029-814X.2009.02.017
    [4]
    颉晓勇, 苏天凤, 陈文. 凡纳滨对虾6个养殖群体遗传多样性的比较分析[J]. 南方水产, 2008, 4(6): 42-49. doi: 10.3969/j.issn.2095-0780.2008.06.006
    [5]
    代平, 孔杰, 栾生. 我国凡纳滨对虾种质资源引进与分析[J]. 科学养鱼, 2018(1): 3-5.
    [6]
    ZHANG K, WANG W J, LI W Y, et al. Analysis of genetic diversity and differentiation of seven stocks of Litopenaeus vannamei using microsatellite markers[J]. J Ocean Univ China, 2014, 13(4): 647-656. doi: 10.1007/s11802-014-2208-2
    [7]
    马春艳, 马洪雨, 马凌波, 等. 凡纳滨对虾引进群体和2个养殖群体遗传变异的微卫星分析[J]. 海洋渔业, 2011, 33(1): 1-8. doi: 10.3969/j.issn.1004-2490.2011.01.001
    [8]
    包秀凤. 凡纳滨对虾选育群体遗传多样性分析[D]. 湛江: 广东海洋大学, 2014: 11-26.
    [9]
    HU X J, CAO Y C, WEN G L, et al. Effect of combined use of Bacillus and molasses on microbial communities in shrimp cultural enclosure systems[J]. Aquacult Res, 2017, 48(6): 2691-2705. doi: 10.1111/are.2017.48.issue-6
    [10]
    GARCIA D K, DHAR A K, ALCIVAR-WARREN A. Molecular analysis of a RAPD marker (B20) reveals two microsatellites and differential mRNA expression in Penaeus vannamei[J]. Mol Mar Biol Biotechnol, 1996, 5(1): 71-83. doi: 10.1007/BF02762417
    [11]
    CRUZ P, MEJIA-RUIZ C H, PEREZ-ENRIQUEZ R, et al. Isolation and characterization of microsatellites in Pacific white shrimp Penaeus (Litopenaeus) vannamei[J]. Mol Ecol Resour, 2002, 2(3): 239-241.
    [12]
    JIA Z, SUN X, LIANG L, et al. Isolation and characterization of microsatellite markers from Pacific white shrimp (Litopenaeus vannamei)[J]. Mol Ecol Resour, 2006, 6(4): 1282-1284.
    [13]
    MEEHAN D, XU Z, ZUNIGA G, et al. High frequency and large number of polymorphic microsatellites in cultured shrimp, Penaeus (Litopenaeus) vannamei[J]. Mar Biotechnol, 2003, 5(4): 311-330. doi: 10.1007/s10126-002-0092-z
    [14]
    ALCIVAR-WARREN A, MEEHAN-MEOLA D, PARK S W, et al. ShrimpMap: a low-density, microsatellite-based linkage map of the pacific whiteleg shrimp, Litopenaeus vannamei: identification of sex-linked markers in linkage group 4[J]. J Shellfish Res, 2007, 26(4): 1259-1277. doi: 10.2983/0730-8000(2007)26[1259:SALMLM]2.0.CO;2
    [15]
    ALCIVAR-WARREN A, SONG L, MEEHAN D, et al. Mapping simple sequence repeat markers identified in ESTs from a subtracted cDNA library of white spot virus-challenged shrimp Litopenaeus vannamei[J]. J Shellfish Res, 2007, 26(4): 1247-1258. doi: 10.2983/0730-8000(2007)26[1247:CAMOES]2.0.CO;2
    [16]
    GARCIA D K, ALCIVAR-WARREN A. Characterization of 35 new microsatellite genetic markers for the pacific whiteleg shrimp, Litopenaeus vannamei: their usefulness for studying genetic diversity of wild and cultured stocks, tracing pedigree in breeding programs, and linkage mapping[J]. J Shellfish Res, 2007, 26(4): 1203-1216. doi: 10.2983/0730-8000(2007)26[1203:CONMGM]2.0.CO;2
    [17]
    YEH F C, BOYLE T J B. Population genetic analysis of co-dominant and dominant markers and quantitative traits[J]. Belg J Botany, 1997, 129(2): 157.
    [18]
    NEI M. Estimation of average heterozygosity and genetic distance from a small number of individuals[J]. Genetics, 1978, 89(3): 583-590.
    [19]
    NAGY S, POCZAI P, CERNÁK I, et al. PICcalc: An online program to calculate polymorphic information content for molecular genetic studies[J]. Biochem Genet, 2012, 50(9/10): 670-672.
    [20]
    TAMURA K, PETERSON D, PETERSON N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Mol Biol Evol, 2011, 28(10): 2731-2739. doi: 10.1093/molbev/msr121
    [21]
    孙效文, 张晓锋, 赵莹莹, 等. 水产生物微卫星标记技术研究进展及其应用[J]. 中国水产科学, 2008, 15(4): 689-703. doi: 10.3321/j.issn:1005-8737.2008.04.022
    [22]
    杨铭, 于洋, 张晓军, 等. 基于转录组数据的凡纳滨对虾微卫星标记开发[J]. 海洋科学, 2017, 41(2): 96-102.
    [23]
    YU Y, ZHANG X J, YUAN J B, et al. Genome survey and high-density genetic map construction provide genomic and genetic resources for the Pacific white shrimp Litopenaeus vannamei[J]. Sci Rep, 2015, 5: 15612. doi: 10.1038/srep15612
    [24]
    谢丽, 陈国良, 叶富良, 等. 凡纳滨对虾4个选育群体遗传多样性的SSR分析[J]. 广东海洋大学学报, 2009, 29(4): 5-9. doi: 10.3969/j.issn.1673-9159.2009.04.002
    [25]
    LEBERG P L. Estimating allelic richness: effects of sample size and bottlenecks[J]. Mol Ecol, 2002, 11(11): 2445-2449.
    [26]
    CHANG Y M, LIANG L Q, MA H T, et al. Microsatellite analysis of genetic diversity and population structure of Chinese mitten crab (Eriocheir sinensis)[J]. J Genet Genomics, 2008, 35(3): 171-176. doi: 10.1016/S1673-8527(08)60023-5
    [27]
    QUAN Y C, SUN X W, LIANG L Q. Genetic popymorphism of microsatellite DNA in two populations of nothern sheatfish (Silurus soldatovi)[J]. Acta Genet Sin, 2006, 33: 908-916. doi: 10.1016/S0379-4172(06)60125-X
    [28]
    孙成波, 陈国良, 童汉荣, 等. 美国4个凡纳滨对虾(Litopenaeus vannamei)种群形态差异与判别分析[J]. 海洋与湖沼, 2009, 40(1): 27-32. doi: 10.3321/j.issn:0029-814X.2009.01.005
  • Cited by

    Periodical cited type(3)

    1. 徐浩,黄亮亮,王才广,杨伊恒,宋建强,胥鹏,吴志强. 北部湾棕斑兔头鲀时空分布及其与环境因子的关系. 应用生态学报. 2025(03): 903-910 .
    2. 赵国庆,吴祖立,崔雪森,樊伟,石永闯,肖戈,唐峰华. 基于空间自相关模型的西北太平洋日本鲭渔场时空变动研究. 海洋学报. 2022(01): 22-35 .
    3. 张曼,王雪辉,蔡研聪,杜飞雁,孙典荣,王跃中,王亮根,许柳雄,邱永松. 北部湾带鱼空间聚散变化特征. 中国水产科学. 2022(11): 1647-1658 .

    Other cited types(2)

Catalog

    Article views (3911) PDF downloads (48) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return