HUANG Xiaoshuai, XU Yu, HU Xiaojuan, XU Wujie, SU Haochang, WEN Guoliang, YANG Keng, CAO Yucheng. Genetic diversity analysis of first filial generation of seven introduced Litopenaeus vannamei populations using microsatellite DNA markers[J]. South China Fisheries Science, 2019, 15(1): 54-62. DOI: 10.12131/20180135
Citation: HUANG Xiaoshuai, XU Yu, HU Xiaojuan, XU Wujie, SU Haochang, WEN Guoliang, YANG Keng, CAO Yucheng. Genetic diversity analysis of first filial generation of seven introduced Litopenaeus vannamei populations using microsatellite DNA markers[J]. South China Fisheries Science, 2019, 15(1): 54-62. DOI: 10.12131/20180135

Genetic diversity analysis of first filial generation of seven introduced Litopenaeus vannamei populations using microsatellite DNA markers

More Information
  • Received Date: June 19, 2018
  • Revised Date: September 04, 2018
  • Accepted Date: October 09, 2018
  • Available Online: December 04, 2018
  • Microsatellite DNA markers were used to assess the genetic diversity of first filial generation of seven introduced Litopenaeus vannamei populations, named TH-A1, TH-A2, TH-B, US-C1, US-C2, US-C3 and US-C4, respectively. The results show that the seven populations had varying polymorphism at 12 microsatellite loci, with the mean allele number (Na) ranging from 3.333 to 6.167. The mean values of expected (He) and observed (Ho) heterozygosity were 0.477–0.670 and 0.370–0.505, respectively. The polymorphic information content (PIC) for each population varied from 0.414 to 0.623. For Hardy-Weinberg equilibrium test, 44 out of 88 exhibited significant deviation (P<0.05), which corresponded with the fact thatHe was slightly higher than Ho. Cluster analysis shows that the seven populations were clustered into three branches (TH-A1; US-C1, US-C2 and TH-A2; the rest). It is indicated that the genetic characteristics vary in different cultured populations of L. vannamei. The results provide references for further exploration of relevance between genetic characteristics and practical performance of L. vannamei.

  • [1]
    王兴强, 马甡, 董双林. 凡纳滨对虾生物学及养殖生态学研究进展[J]. 海洋湖沼通报, 2004(4): 94-100. doi: 10.3969/j.issn.1003-6482.2004.04.016
    [2]
    农业部渔业渔政管理局. 2017中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2017: 22-61.
    [3]
    童馨, 龚世圆, 喻达辉, 等. 凡纳滨对虾(Litopenaeus vannanamei)不同世代养殖群体的遗传多样性分析[J]. 海洋与湖沼, 2009, 40(2): 214-220. doi: 10.3321/j.issn:0029-814X.2009.02.017
    [4]
    颉晓勇, 苏天凤, 陈文. 凡纳滨对虾6个养殖群体遗传多样性的比较分析[J]. 南方水产, 2008, 4(6): 42-49. doi: 10.3969/j.issn.2095-0780.2008.06.006
    [5]
    代平, 孔杰, 栾生. 我国凡纳滨对虾种质资源引进与分析[J]. 科学养鱼, 2018(1): 3-5.
    [6]
    ZHANG K, WANG W J, LI W Y, et al. Analysis of genetic diversity and differentiation of seven stocks of Litopenaeus vannamei using microsatellite markers[J]. J Ocean Univ China, 2014, 13(4): 647-656. doi: 10.1007/s11802-014-2208-2
    [7]
    马春艳, 马洪雨, 马凌波, 等. 凡纳滨对虾引进群体和2个养殖群体遗传变异的微卫星分析[J]. 海洋渔业, 2011, 33(1): 1-8. doi: 10.3969/j.issn.1004-2490.2011.01.001
    [8]
    包秀凤. 凡纳滨对虾选育群体遗传多样性分析[D]. 湛江: 广东海洋大学, 2014: 11-26.
    [9]
    HU X J, CAO Y C, WEN G L, et al. Effect of combined use of Bacillus and molasses on microbial communities in shrimp cultural enclosure systems[J]. Aquacult Res, 2017, 48(6): 2691-2705. doi: 10.1111/are.2017.48.issue-6
    [10]
    GARCIA D K, DHAR A K, ALCIVAR-WARREN A. Molecular analysis of a RAPD marker (B20) reveals two microsatellites and differential mRNA expression in Penaeus vannamei[J]. Mol Mar Biol Biotechnol, 1996, 5(1): 71-83. doi: 10.1007/BF02762417
    [11]
    CRUZ P, MEJIA-RUIZ C H, PEREZ-ENRIQUEZ R, et al. Isolation and characterization of microsatellites in Pacific white shrimp Penaeus (Litopenaeus) vannamei[J]. Mol Ecol Resour, 2002, 2(3): 239-241.
    [12]
    JIA Z, SUN X, LIANG L, et al. Isolation and characterization of microsatellite markers from Pacific white shrimp (Litopenaeus vannamei)[J]. Mol Ecol Resour, 2006, 6(4): 1282-1284.
    [13]
    MEEHAN D, XU Z, ZUNIGA G, et al. High frequency and large number of polymorphic microsatellites in cultured shrimp, Penaeus (Litopenaeus) vannamei[J]. Mar Biotechnol, 2003, 5(4): 311-330. doi: 10.1007/s10126-002-0092-z
    [14]
    ALCIVAR-WARREN A, MEEHAN-MEOLA D, PARK S W, et al. ShrimpMap: a low-density, microsatellite-based linkage map of the pacific whiteleg shrimp, Litopenaeus vannamei: identification of sex-linked markers in linkage group 4[J]. J Shellfish Res, 2007, 26(4): 1259-1277. doi: 10.2983/0730-8000(2007)26[1259:SALMLM]2.0.CO;2
    [15]
    ALCIVAR-WARREN A, SONG L, MEEHAN D, et al. Mapping simple sequence repeat markers identified in ESTs from a subtracted cDNA library of white spot virus-challenged shrimp Litopenaeus vannamei[J]. J Shellfish Res, 2007, 26(4): 1247-1258. doi: 10.2983/0730-8000(2007)26[1247:CAMOES]2.0.CO;2
    [16]
    GARCIA D K, ALCIVAR-WARREN A. Characterization of 35 new microsatellite genetic markers for the pacific whiteleg shrimp, Litopenaeus vannamei: their usefulness for studying genetic diversity of wild and cultured stocks, tracing pedigree in breeding programs, and linkage mapping[J]. J Shellfish Res, 2007, 26(4): 1203-1216. doi: 10.2983/0730-8000(2007)26[1203:CONMGM]2.0.CO;2
    [17]
    YEH F C, BOYLE T J B. Population genetic analysis of co-dominant and dominant markers and quantitative traits[J]. Belg J Botany, 1997, 129(2): 157.
    [18]
    NEI M. Estimation of average heterozygosity and genetic distance from a small number of individuals[J]. Genetics, 1978, 89(3): 583-590.
    [19]
    NAGY S, POCZAI P, CERNÁK I, et al. PICcalc: An online program to calculate polymorphic information content for molecular genetic studies[J]. Biochem Genet, 2012, 50(9/10): 670-672.
    [20]
    TAMURA K, PETERSON D, PETERSON N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Mol Biol Evol, 2011, 28(10): 2731-2739. doi: 10.1093/molbev/msr121
    [21]
    孙效文, 张晓锋, 赵莹莹, 等. 水产生物微卫星标记技术研究进展及其应用[J]. 中国水产科学, 2008, 15(4): 689-703. doi: 10.3321/j.issn:1005-8737.2008.04.022
    [22]
    杨铭, 于洋, 张晓军, 等. 基于转录组数据的凡纳滨对虾微卫星标记开发[J]. 海洋科学, 2017, 41(2): 96-102.
    [23]
    YU Y, ZHANG X J, YUAN J B, et al. Genome survey and high-density genetic map construction provide genomic and genetic resources for the Pacific white shrimp Litopenaeus vannamei[J]. Sci Rep, 2015, 5: 15612. doi: 10.1038/srep15612
    [24]
    谢丽, 陈国良, 叶富良, 等. 凡纳滨对虾4个选育群体遗传多样性的SSR分析[J]. 广东海洋大学学报, 2009, 29(4): 5-9. doi: 10.3969/j.issn.1673-9159.2009.04.002
    [25]
    LEBERG P L. Estimating allelic richness: effects of sample size and bottlenecks[J]. Mol Ecol, 2002, 11(11): 2445-2449.
    [26]
    CHANG Y M, LIANG L Q, MA H T, et al. Microsatellite analysis of genetic diversity and population structure of Chinese mitten crab (Eriocheir sinensis)[J]. J Genet Genomics, 2008, 35(3): 171-176. doi: 10.1016/S1673-8527(08)60023-5
    [27]
    QUAN Y C, SUN X W, LIANG L Q. Genetic popymorphism of microsatellite DNA in two populations of nothern sheatfish (Silurus soldatovi)[J]. Acta Genet Sin, 2006, 33: 908-916. doi: 10.1016/S0379-4172(06)60125-X
    [28]
    孙成波, 陈国良, 童汉荣, 等. 美国4个凡纳滨对虾(Litopenaeus vannamei)种群形态差异与判别分析[J]. 海洋与湖沼, 2009, 40(1): 27-32. doi: 10.3321/j.issn:0029-814X.2009.01.005
  • Cited by

    Periodical cited type(5)

    1. 段毓佳,谭建,栾生,罗坤,王宏杰,隋娟,孟宪红,孔杰. 凡纳滨对虾在低氧环境下存活性状的遗传参数评估. 渔业科学进展. 2024(01): 138-147 .
    2. 赵海池,刘志峰,王新安,包玉龙,刘圣聪,杨明超,闫鹏飞,马爱军. 红鳍东方鲀(Takifugu rubripes)耐低温性状和生长性状遗传参数评估. 海洋与湖沼. 2024(02): 517-525 .
    3. 周静心,孟宪红,傅强,曹宝祥,陈宝龙,刘绵宇,曹家旺,李旭鹏,强光峰,代平,栾生,邢群,李色东,孔杰. 常压室温等离子体(ARTP)诱变对凡纳对虾不同家系幼体发育及仔虾抗逆性状的影响. 渔业科学进展. 2024(06): 144-154 .
    4. 黄桂仙,李旭鹏,田吉腾,栾生,孔杰,曹宝祥,刘宁,罗坤,谭建,曹家旺,代平,陈宝龙,强光峰,刘绵宇,刘杨,王宏杰,刘学会,隋娟,孟宪红. 凡纳对虾不同品系生长和急性肝胰腺坏死病抗性遗传参数估计. 渔业科学进展. 2024(06): 133-143 .
    5. 何立彬,郭冉,于志文,高佳朋,韩佳乐. 不同密度下凡纳滨对虾工厂化养殖水体微生物多样性动态变化. 黑龙江水产. 2022(06): 14-21 .

    Other cited types(6)

Catalog

    Recommendations
    Study on classification models for acoustic signals oflitopenaeus vannameifeeding on different kinds of diets
    CAO Zhengliang et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Comparative study on growth, hepatopancreas and gill histological structure, and enzyme activities oflitopenaeus vannameiunder so42−/cl−stress in low saline water
    HE Zheng et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Intestinal tissue structure, digestive enzymes, antioxidant enzymes and intestinal flora diversity between second filial generation and wild population ofbrachymystax tsinlingensisli, 1966
    SONG Rongqun et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Effects of lh crude oil and no.0 diesel oil emulsion on hepatopancreatic antioxidant enzyme activity and related functional gene expression inlitopenaeus vannamei
    SHEN Chuyan et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Quantitative detection method of swimming activity of litopenaeus vannamei based on improved yolov7-tiny
    LI Zhijian et al., JOURNAL OF FISHERIES OF CHINA, 2024
    Microsatellite analysis of genetic variation in different generations of exopalaemon carinicauda breeding stock under low-salinity culture conditions
    ZHANG Xiaoyu et al., JOURNAL OF FISHERY SCIENCES OF CHINA, 2025
    Slim 4: multispecies eco-evolutionary modeling
    Haller, Benjamin C., AMERICAN NATURALIST, 2023
    Finngen provides genetic insights from a well-phenotyped isolated population
    Kurki, Mitja, I et al., NATURE, 2023
    Mettl3-modified exosomes from adipose-derived stem cells enhance the proliferation and migration of dermal fibroblasts by mediating m6a modification of ccnb1 mrna
    ARCHIVES OF DERMATOLOGICAL RESEARCH, 2025
    Optimization of low-power femtosecond laser trepan drilling by machine learning and a high-throughput multi-objective genetic algorithm
    OPTICS AND LASER TECHNOLOGY, 2021
    Powered by
    Article views (3923) PDF downloads (49) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return