Citation: | DENG Yiqin, CHEN Chang, SU Youlu, CEHNG Changhong, MA Hongling, GUO Zhixun, FENG Juan. Construction of knock-out mutant of sRNA srvg17985 in Vibrio alginolyticus ZJ-T and its preliminary function analysis[J]. South China Fisheries Science, 2019, 15(1): 42-53. DOI: 10.12131/20180127 |
We constructed the sRNA srvg17985 knock-out mutant in Vibrio alginolyticus ZJ-T by using homologous recombination, so as to compare the biological characteristics of growth in LBS medium, motility, extracellular protease secretion, iron utilization, antibiotic resistance and metabolism between the wild type and the mutant strains. The results show that the absence of sRNA srvg17985 did not affect the growth in LBS medium, motility, extracellular protease secretion, iron utilization, antibiotic resistance and most of the tested carbon and nitrogen sources metabolism in V. alginolyticus. However, the mutant showed better utilization of laminarin, pectin and dihydroxyaceton, and gained the ability to utilize alanine-aspartic acid (Ala-Asp) as the sole nitrogen source.
[1] |
STORZ G, VOGEL J, WASSARMAN K M. Regulation by small RNAs in bacteria: expanding frontiers[J]. Mol Cell, 2011, 43(6): 880-891. doi: 10.1016/j.molcel.2011.08.022
|
[2] |
WAGNER E G, ROMBY P. Small RNAs in bacteria and archaea: who they are, what they do, and how they do it[J]. Adv Genet, 2015, 90: 133-208.
|
[3] |
LIU J M, CAMILLI A. A broadening world of bacterial small RNAs[J]. Curr Opin Microbiol, 2010, 13(1): 18-23. doi: 10.1016/j.mib.2009.11.004
|
[4] |
NGUYEN A N, JACQ A. Small RNAs in the Vibrionaceae: an ocean still to be explored[J]. Wiley Interdiscip Rev RNA, 2014, 5(3): 381-392. doi: 10.1002/wrna.1218
|
[5] |
HUANG L, HU J, SU Y, et al. Genome-wide detection of predicted non-coding RNAs related to the adhesion process in Vibrio alginolyticus using high-throughput sequencing[J]. Front Microbiol, 2016, 7: 619.
|
[6] |
DENG Y, SU Y, LIU S, et al. Identification of a novel small RNA srvg23535 in Vibrio alginolyticus ZJ-T and its characterization with phenotype microarray technology[J]. Front Microbiol, 2018,9: 1-13.
|
[7] |
MUKHERJI A, SCHROEDER S, DEYLING C, et al. An unusual source of Vibrio alginolyticus-associated otitis: prolonged colonization or freshwater exposure?[J]. Arch Otolaryngol Head Neck Surg, 2000, 126(6): 790-791. doi: 10.1001/archotol.126.6.790
|
[8] |
JACOBS SLIFKA K M, NEWTON A E, MAHON B E. Vibrio alginolyticus infections in the USA, 1988-2012[J]. Epidemiol Infect, 2017, 145(7): 1491-1499. doi: 10.1017/S0950268817000140
|
[9] |
CHANG C, JIN X, CHAOQUN H. Phenotypic and genetic differences between opaque and translucent colonies of Vibrio alginolyticus[J]. Biofouling, 2009, 25(6): 525-531. doi: 10.1080/08927010902964578
|
[10] |
SOLANO C, ECHEVERZ M, LASA I. Biofilm dispersion and quorum sensing[J]. Curr Opin Microbiol, 2014, 18(4): 96-104.
|
[11] |
ALONSO C R. Post-transcriptional gene regulation via RNA control[J]. Brief Funct Genomics, 2013, 12(1): 1-2. doi: 10.1093/bfgp/els060
|
[12] |
WANG Z, SUN X, ZHAO Y, et al. Evolution of gene regulation during transcription and translation[J]. Genome Biol Evol, 2015, 7(4): 1155-1167. doi: 10.1093/gbe/evv059
|
[13] |
HUANG X, CHEN C, REN C, et al. Identification and characterization of a locus putatively involved in colanic acid biosynthesis in Vibrio alginolyticus ZJ-51[J]. Biofouling, 2018, 34(1): 1-14. doi: 10.1080/08927014.2017.1400020
|
[14] |
LE R F, BINESSE J, SAULNIER D, et al. Construction of a Vibrio splendidus mutant lacking the metalloprotease gene vsm by use of a novel counterselectable suicide vector[J]. Appl Environ Microbiol, 2007, 73(3): 777-784.
|
[15] |
NGUYEN A N, DISCONZI E, CHARRIÈRE G M, et al. csrB gene duplication drives the evolution of redundant regulatory pathways controlling expression of the major toxic secreted metalloproteases in Vibrio tasmaniensis LGP32[J]. mSphere, 2018, 3(6): e00582-18.
|
[16] |
VAL M E, SKOVGAARD O, DUCOS-GALAND M, et al. Genome engineering in Vibrio cholerae: a feasible approach to address biological issues[J]. PLoS genetics, 2012, 8(1): e1002472.
|
[17] |
DENG Y Q, CHEN C, ZHAO Z, et al. The RNA chaperone Hfq is involved in colony morphology, nutrient utilization and oxidative and envelope stress response in Vibrio alginolyticus[J]. PLoS One, 2016, 11(9): e0163689. doi: 10.1371/journal.pone.0163689
|
[18] |
BOCHNER B R, GADZINSKI P, PANOMITROS E. Phenotype microarrays for high-throughput phenotypic testing and assay of gene function[J]. Genome Res, 2001, 11(7): 1246-1255. doi: 10.1101/gr.186501
|
[19] |
GRIPENLAND J, NETTERLING S, LOH E, et al. RNAs: regulators of bacterial virulence[J]. Nat Rev Microbiol, 2010, 8(12): 857-866. doi: 10.1038/nrmicro2457
|
[20] |
HAIKO J, WESTERLUND-WIKSTRÖM B. The role of the bacterial flagellum in adhesion and virulence[J]. Biology (Basel), 2013, 2(4): 1242-1267.
|
[21] |
PAJUELO D, LEE C T, ROIG F J, et al. Novel host-specific iron acquisition system in the zoonotic pathogen Vibrio vulnificus[J]. Environ Microbiol, 2015, 17(6): 2076-2089. doi: 10.1111/1462-2920.12782
|
[22] |
CHANG S C, LEE C Y. OpaR and RpoS are positive regulators of a virulence factor PrtA in Vibrio parahaemolyticus[J]. Microbiology, 2018, 164(2): 221-231. doi: 10.1099/mic.0.000591
|
[23] |
RYAN D, OJHA U K, JAISWAL S, et al. The small RNA DsrA influences the acid tolerance response and virulence of Salmonella enterica serovar Typhimurium[J]. Front Microbiol, 2016, 7: 599.
|
[24] |
GUO Y, QUIROGA C, CHEN Q, et al. RalR (a DNase) and RalA (a small RNA) form a type I toxin-antitoxin system in Escherichia coli[J]. Nucleic Acids Res, 2014, 42(10): 6448-6462. doi: 10.1093/nar/gku279
|
[25] |
MOON K, SIX D A, LEE H J, et al. Complex transcriptional and post-transcriptional regulation of an enzyme for lipopolysaccharide modification[J]. Mol Microbiol, 2013, 89(1): 52-64. doi: 10.1111/mmi.2013.89.issue-1
|
[26] |
BEISEL C L, STORZ G. The base-pairing RNA spot 42 participates in a multioutput feedforward loop to help enact catabolite repression in Escherichia coli[J]. Mol Cell, 2011, 41(3): 286-297. doi: 10.1016/j.molcel.2010.12.027
|
[27] |
URBANOWSKI M L, STAUFFER L T, STAUFFER G V. The gcvB gene encodes a small untranslated RNA involved in expression of the dipeptide and oligopeptide transport systems in Escherichia coli[J]. Mol Microbiol, 2000, 37(4): 856-868. doi: 10.1046/j.1365-2958.2000.02051.x
|
[28] |
PULVERMACHER S C, STAUFFER L T, STAUFFER G V. Role of the Escherichia coli Hfq protein in GcvB regulation of oppA and dppA mRNAs[J]. Microbiology, 2009, 155(Pt 1): 115-123.
|
[29] |
ALDERKAMP A C, van RIJSSEL M, BOLHUIS H. Characterization of marine bacteria and the activity of their enzyme systems involved in degradation of the algal storage glucan laminarin[J]. FEMS Microbiol Ecol, 2007, 59(1): 108-117. doi: 10.1111/fem.2007.59.issue-1
|
[30] |
MOHNEN D. Pectin structure and biosynthesis[J]. Curr Opin Plant Biol, 2008, 11(3): 266-277. doi: 10.1016/j.pbi.2008.03.006
|
[31] |
DENG Y, CHEN C, ZHAO Z, et al. Complete genome sequence of Vibrio alginolyticus ZJ-T[J]. Genome Announc, 2016, 4(5): e00912-e00916.
|
[32] |
杜青平, 王倩, 曹立创, 等. 悬浮物变化引起细菌JS17生长曲线的波动规律[J]. 广东工业大学学报, 2012, 29(3): 77-80. doi: 10.3969/j.issn.1671-623X.2012.03.011
|