Citation: | TONG Fei, FENG Xue, YUAN Huarong, CHEN Yuxiang, SHU Liming, LIU Yan, CHEN Pimao. Study on disturbance of oyster culture on environmental factors and bacterioplankton in Dapeng Cove[J]. South China Fisheries Science, 2024, 20(5): 32-41. DOI: 10.12131/20240138 |
In order to assess the environmental and ecological effects of oyster culture in typical semi-enclosed bays, as well as to elucidate the role and significance of oysters in the management and restoration of marine environments. Based on high-throughput sequencing technology, we explored the characteristics of the changes in the structure and function of water body colonies in the oyster culture area within a typical urban semi-enclosed bay (Dapeng Cove) in four seasons, and compared the characteristics of the differences in environmental factors in the water body and sediment between the culture area and the control area in the four seasons. The results indicate that oyster culture caused relatively little disturbance to environmental factors such as nutrients in the water of Dapeng Cove, but its biological sedimentation enhanced the enrichment of total organic carbon (TOC), sulfides (Sul), and some heavy metals in the sea area. The high-throughput sequencing results show that the relative abundance of colonies such as Chloroflexi, Desulfobacteraceae and Actinobacteria in the winter oyster culture area was significantly higher than that in the control area (p<0.05). The redundancy analysis (RDA) reveals that the main environmental factors affecting bacterioplankton structure between the oyster culture area and the control area in winter were SiO2−3, sea surface temperature (SST) and salinity. The results of biogeochemical function of water colonies predicted based on the FAPROTAX model show that the biogeochemical effects of nitrogen (N) and sulfur (S) mediated by bacteria in the oyster culture area in winter were significantly higher than those in the control area (p<0.05). In conclusion, oyster culture causes certain disturbances to the bacterial structure and composition of seawater in Dapeng Cove, but its degree and scope of influence are constrained by a combination of factors such as seasonal changes in physical and chemical factors and hydrological conditions. Furthermore, oysters culture facilitates the biogeochemical cycling of elements such as nitrogen and sulfur.
[1] |
MARTÍNEZ-BAENA F, LANHAM B S, MCLEOD I M, et al. Remnant oyster reefs as fish habitat within the estuarine seascape[J]. Mar Environ Res, 2022, 179: 105675. doi: 10.1016/j.marenvres.2022.105675
|
[2] |
邓云龙, 曹煜成, 徐煜, 等. 贝、藻耦合对集约化养殖尾水的净化效果研究[J]. 南方水产科学, 2023, 19(5): 113-122.
|
[3] |
杨小彤, 叶灵通, 卢洁, 等. 广东近岸海域贝类寄生派琴虫流行病学调查研究[J]. 南方水产科学, 2022, 18(1): 128-134.
|
[4] |
RAY N E, FULWEILER R W. Meta-analysis of oyster impacts on coastal biogeochemistry[J]. Nat Sustain, 2021, 4(3): 261-269.
|
[5] |
LABRIE M S, SUNDERMEYER M A, HOWES B L. Quantifying the effects of floating oyster aquaculture on nitrogen cycling in a temperate coastal embayment[J]. Estuar Coast, 2023, 46(2): 494-511. doi: 10.1007/s12237-022-01133-2
|
[6] |
PAN K, LAN W L, LI T S, et al. Control of phytoplankton by oysters and the consequent impact on nitrogen cycling in a subtropical bay[J]. Sci Total Environ, 2021, 796: 149007. doi: 10.1016/j.scitotenv.2021.149007
|
[7] |
CLEMENTS J C, COMEAU L A. Nitrogen removal potential of shellfish aquaculture harvests in eastern Canada: a comparison of culture methods[J]. Aquac Rep, 2019, 13: 100183. doi: 10.1016/j.aqrep.2019.100183
|
[8] |
CERCO C, NOEL M. Can oyster restoration reverse cultural eutrophication in Chesapeake Bay?[J]. Estuaries Coasts, 2007, 30(2): 331-343. doi: 10.1007/BF02700175
|
[9] |
OKUMURA Y, MASUDA Y, MATSUTANI M, et al. Influence of oyster and seaweed cultivation facilities on coastal environment and eukaryote assemblages in Matsushima Bay, northeastern Honshu, Japan[J]. Front Mar Sci, 2023, 9: 1022168. doi: 10.3389/fmars.2022.1022168
|
[10] |
HOSACK G R, DUMBAULD B R, RUESINK J L, et al. Habitat associations of estuarine species: comparisons of intertidal mudflat, seagrass (Zostera marina), and oyster (Crassostrea gigas) habitats[J]. Estuar Coast, 2006, 29(6): 1150-1160. doi: 10.1007/BF02781816
|
[11] |
GAURIER B, GERMAIN G, KERVELLA Y, et al. Experimental and numerical characterization of an oyster farm impact on the flow[J]. Eur J Mech B-FLUIDS, 2011, 30(5): 513-525. doi: 10.1016/j.euromechflu.2011.05.001
|
[12] |
COMEAU L A, MALLET A L, CARVER C E, et al. Impact of high-density suspended oyster culture on benthic sediment characteristics[J]. Aquac Eng, 2014, 58: 95-102. doi: 10.1016/j.aquaeng.2013.12.004
|
[13] |
USHIJIMA B, RICHARDS G P, WATSON M A, et al. Factors affecting infection of corals and larval oysters by Vibrio coralliilyti cus[J]. PLoS One, 2018, 13(6): e0199475. doi: 10.1371/journal.pone.0199475
|
[14] |
NEWELL R I E, KEMP W M, III J D H, et al. Top-down control of phytoplankton by oysters in Chesapeake Bay, USA: comment on Pomeroy et al. (2006)[J]. Mar Ecol Prog Ser, 2007, 341: 293-298. doi: 10.3354/meps341293
|
[15] |
PERNET F, DUPONT S, GATTUSO J P, et al. Cracking the myth: bivalve farming is not a CO2 sink[J/OL]. Rev Aquac, [2024-08-31]. https://onlinelibrary.wiley.com/doi/full/10.1111/raq.12954.
|
[16] |
张卓, 李政菊, 江天久. 大鹏澳海域麻痹性贝类毒素时空动态变化特征[J]. 海洋环境科学, 2018, 37(6): 808-812.
|
[17] |
ROSE J M, BRICKER S B, TEDESCO M A, et al. A role for shellfish aquaculture in coastal nitrogen management[J]. Environ Sci Technol, 2014, 48(5): 2519-2525. doi: 10.1021/es4041336
|
[18] |
RAO Y Y, CAI L Z, CHEN B W, et al. How do spatial and environmental factors shape the structure of a coastal macrobenthic community and meroplanktonic larvae cohort? Evidence from Daya Bay[J]. Mar Pollut Bull, 2020, 157: 111242. doi: 10.1016/j.marpolbul.2020.111242
|
[19] |
郑利涛. 深圳大亚湾水质模拟与风险扩散预测研究[D]. 天津: 天津大学, 2022: 25-51.
|
[20] |
PIERANGELI G M F, DOMINGUES M R, CHOUERI R B, et al. Spatial variation and environmental parameters affecting the abundant and rare communities of bacteria and archaea in the sediments of tropical urban reservoirs[J]. Microb Ecol, 2022, 86: 297-310.
|
[21] |
FANG G J, YU H L, SHENG H X, et al. Comparative analysis of microbial communities between water and sediment in Laoshan Bay marine ranching with varied aquaculture activities[J]. Mar Pollut Bull, 2021, 173: 112990. doi: 10.1016/j.marpolbul.2021.112990
|
[22] |
RAJEEV M, SUSHMITHA T J, TOLETI S R, et al. Sediment-associated bacterial community and predictive functionalities are influenced by choice of 16S ribosomal RNA hypervariable region(s): an amplicon-based diversity study[J]. Genomics, 2020, 112(6): 4968-4979. doi: 10.1016/j.ygeno.2020.09.006
|
[23] |
崔毅, 陈碧鹃, 陈聚法. 黄渤海海水养殖自身污染的评估[J]. 应用生态学报, 2005, 16(1): 180-185.
|
[24] |
RODHOUSE P G, RODEN C M, HENSEY M P, et al. Production of mussels, mytilus edulis, in suspended culture and estimates of carbon and nitrogen flow: Killary Harbour, Ireland[J]. J Mar Biol Assoc U K, 1985, 65(1): 55-68. doi: 10.1017/S0025315400060793
|
[25] |
沈雨欣, 李书杰, 李希磊, 等. 海湾扇贝养殖自身污染对养殖海区生态环境的影响[J]. 渔业研究, 2018, 40(4): 324-328.
|
[26] |
孙丽华, 陈浩如, 彭云辉, 等. 大亚湾大鹏澳周边河流中营养盐的分布及入海通量的估算[J]. 台湾海峡, 2003, 22(2): 211-217.
|
[27] |
任秀文, 姜国强, 刘爱萍, 等. 大亚湾主要入海河流污染物通量估算研究[C]//2013中国环境科学学会学术年会论文集 (第四卷). 昆明: 中国环境科学学会, 2013: 1055-1064.
|
[28] |
孙振宇, 陈照章, 杨龙奇, 等. 大亚湾及周边海区潮流和余流的季节变化特征[J]. 厦门大学学报(自然科学版), 2020, 59(2): 278-286.
|
[29] |
CAMPBELL M D, HALL S G. Hydrodynamic effects on oyster aquaculture systems: a review[J]. Rev Aquac, 2019, 11(3): 896-906. doi: 10.1111/raq.12271
|
[30] |
XU C, YANG B, DAN S F, et al. Spatiotemporal variations of biogenic elements and sources of sedimentary organic matter in the largest oyster mariculture bay (Maowei Sea), Southwest China[J]. Sci Total Environ, 2020, 730: 139056. doi: 10.1016/j.scitotenv.2020.139056
|
[31] |
LACOSTE É, GAERTNER-MAZOUNI N. Nutrient regeneration in the water column and at the sediment-water interface in pearl oyster culture (Pinctada margaritifera) in a deep atoll lagoon (Ahe, French Polynesia)[J]. Estuar Coast Shelf Sci, 2016, 182: 304-309. doi: 10.1016/j.ecss.2016.01.037
|
[32] |
ERLER D V, WELSH D T, BENNET W W, et al. The impact of suspended oyster farming on nitrogen cycling and nitrous oxide production in a sub-tropical Australian estuary[J]. Estuar Coast Shelf Sci, 2017, 192: 117-127. doi: 10.1016/j.ecss.2017.05.007
|
[33] |
AZANDÉGBÉ A, POLY F, ANDRIEUX-LOYER F, et al. Influence of oyster culture on biogeochemistry and bacterial community structure at the sediment-water interface[J]. FEMS Microbiol Ecol, 2012, 82(1): 102-117. doi: 10.1111/j.1574-6941.2012.01410.x
|
[34] |
SIM B R, KIM H C, KANG S, et al. Geochemical indicators for the recovery of sediment quality after the abandonment of oyster Crassostrea gigas farming in South Korea[J]. Korean J Fish Aquat Sci, 2020, 53(5): 773-783.
|
[35] |
YAN Q, SONG J T, ZHOU J, et al. Biodeposition of oysters in an urbanized bay area alleviates the black-malodorous compounds in sediments by altering microbial sulfur and iron metabolism[J]. Sci Total Environ, 2022, 817: 152891. doi: 10.1016/j.scitotenv.2021.152891
|
[36] |
LIU Q, LIAO Y B, ZHU J H, et al. Influence of biodeposition by suspended cultured oyster on the distributions of trace elements in multiple media in a semi-enclosed bay of China[J]. J Hazard Mater, 2023, 443: 130347. doi: 10.1016/j.jhazmat.2022.130347
|
[37] |
SHULKIN V M, PRESLEY B J, KAVUN V. Metal concentrations in mussel Crenomytilus grayanus and oyster Crassostrea gigas in relation to contamination of ambient sediments[J]. Environ Int, 2003, 29(4): 493-502. doi: 10.1016/S0160-4120(03)00004-7
|
[38] |
LIANG J, LIU J, XU G, et al. Distribution and transport of heavy metals in surface sediments of the Zhejiang nearshore area, East China Sea: sedimentary environmental effects[J]. Mar Pollut Bull, 2019, 146: 542-551. doi: 10.1016/j.marpolbul.2019.07.001
|
[39] |
PING X Y, ZHANG H, JIANG Y Z, et al. Sediment properties and benthic fauna associated with stock enhancement and farming of marine bivalve populations in Xiangshan Bay, China[J]. Aquac Res, 2023, 2023: e4729267.
|
[40] |
YAN Q, JIA Z P, SONG J T, et al. Oyster culture changed the phosphorus speciation in sediments through biodeposition[J]. Environ Res, 2023, 216: 114586. doi: 10.1016/j.envres.2022.114586
|
[41] |
LIAO Y B, LIU Q, SHOU L, et al. The impact of suspended oyster farming on macrobenthic community in a eutrophic, semi-enclosed bay: implications for recovery potential[J]. Aquaculture, 2022, 548: 737585. doi: 10.1016/j.aquaculture.2021.737585
|
[42] |
LAVRENTYEV P J, GARDNER W S, YANG L. Effects of the zebra mussel on nitrogen dynamics and the microbial community at the sediment-water interface[J]. Aquat Microb Ecol, 2000, 21(2): 187-194.
|
[43] |
LIU W, BAO Y L, LI K J, et al. The diversity of planktonic bacteria driven by environmental factors in different mariculture areas in the East China Sea[J]. Mar Pollut Bull, 2024, 201: 116136. doi: 10.1016/j.marpolbul.2024.116136
|
[44] |
AULADELL A, BARBERÁN A, LOGARES R, et al. Seasonal niche differentiation among closely related marine bacteria[J]. ISME J, 2022, 16(1): 178-189. doi: 10.1038/s41396-021-01053-2
|
[45] |
VEZZULLI L, STAGNARO L, GRANDE C, et al. Comparative 16S rDNA gene-based microbiota profiles of the Pacific oyster (Crassos trea gigas) and the Mediterranean mussel (Mytilus galloprovincia lis) from a shellfish farm (Ligurian Sea, Italy)[J]. Microb Ecol, 2018, 75(2): 495-504. doi: 10.1007/s00248-017-1051-6
|
[46] |
FANG G J, YU H L, SHENG H X, et al. Seasonal variations and co-occurrence networks of bacterial communities in the water and sediment of artificial habitat in Laoshan Bay, China[J]. PeerJ, 2022, 10: e12705.
|
[47] |
ASHLEY R S, MICHAEL F P, JONATHAN H G. Habitat context influences nitrogen removal by restored oyster reefs[J]. J Appl Ecol, 2015, 52(3): 716-725. doi: 10.1111/1365-2664.12435
|
[48] |
AYVAZIAN S, MULVANEY K, ZARNOCH C, et al. Beyond bioextraction: the role of oyster-mediated denitrification in nutrient management[J]. Environ Sci Technol, 2021, 55(21): 14457-14465. doi: 10.1021/acs.est.1c01901
|
[1] | QI Feng, SHAWUTI Rebiguli, XIAN Yulan, HAN Junjun, MUYITI Minawaer, CHEN Hanfei, SUN Shiping, MA Yanwu, CHEN Peng. Spatio-temporal changes of bacterioplankton communities in Litopenaeus vannamei desalinated ponds and their responses to physicochemical factors[J]. South China Fisheries Science, 2023, 19(2): 50-61. DOI: 10.12131/20220192 |
[2] | WU Fengxia, HUANG Honghui, DAI Ming, TAN Yehui, QI Zhanhui, ZHANG Wenbo. Spatial and temporal pattern of planktonic ciliate community and its relationship with its environment in Dapeng Cove, the South China Sea[J]. South China Fisheries Science, 2017, 13(1): 1-9. DOI: 10.3969/j.issn.2095-0780.2017.01.001 |
[3] | ZHANG Zhe, GONG Xiuyu, HU Ying, ZHANG Linbao, CHEN Haigang, HUANG Honghui, CAI Wengui. Abundance of bacterioplankton and virioplankton in the central and northern South China Sea in autumn[J]. South China Fisheries Science, 2016, 12(4): 9-16. DOI: 10.3969/j.issn.2095-0780.2016.04.002 |
[4] | HAN Tingting, QI Zhanhui, DAI Ming, LIAO Xiuli, WU Fengxia, GONG Xiuyu, FU Guiquan, HUANG Honghui. Study on urea concentration and urease activity of phytoplankton in different areas of Dapeng Cove[J]. South China Fisheries Science, 2016, 12(2): 7-12. DOI: 10.3969/j.issn.2095-0780.2016.02.002 |
[5] | LI Xuguang, QI Zhanhui, LIN Lin, ZHANG Zhe, HUANG Honghui. Preliminary study on archaeal community in sediment of Dapeng Cove using high-throughput sequencing[J]. South China Fisheries Science, 2015, 11(6): 1-8. DOI: 10.3969/j.issn.2095-0780.2015.06.001 |
[6] | KE Changliang, LIN Qin, WANG Zenghuan, HU Derong, LI Zhandong. Distribution characteristic of Pb in sediments from the cage culture area of Dapeng' ao Cove in Daya Bay[J]. South China Fisheries Science, 2007, 3(5): 26-32. |
[7] | HU Derong, LIN Qin, KE Changliang. Preliminary study on the relationship of sulfate-reducing bacteria and other environmental factors in the sediment of marine culture cage area[J]. South China Fisheries Science, 2007, 3(5): 14-18. |
[8] | KE Changliang, LIN Qin, WANG Zenghuan, LI Zhandong, HU Derong. The content distribution characteristic of Cu in the sediments of cage culture area in Dapeng′ao Cove in Daya Bay[J]. South China Fisheries Science, 2007, 3(1): 20-25. |
[9] | QIAO Shibin, LIN Qin. Preliminary study on sediment oxygen demand of marine cage aquaculture in Dapeng′ao Bay[J]. South China Fisheries Science, 2006, 2(3): 32-39. |
[10] | HUANG Hong-hui, LIN Qing, WANG Wen-zhi, JIA Xiao-ping, Li Chun-hou. Impact of cage fish farming on water environment in Daya Bay[J]. South China Fisheries Science, 2005, 1(3): 9-17. |
1. |
史银魁,俞立雄,周雪,高雷,朱峰跃,杨锦毅,陈大庆,王珂,段辛斌. 禁渔初期长江宜昌-城陵矶江段鱼类资源时空分布特征. 水生生物学报. 2024(04): 546-558 .
![]() | |
2. |
张丽媛,熊清海,田敏,刘淑伟,王慧,曲品,蒋荣明,杨剑虹. 阳宗海鱼类群落结构及变化. 云南农业大学学报(自然科学). 2024(02): 60-69 .
![]() | |
3. |
史艳萍,屈婵娟,许旺,周春花,梁璐,王宇翔,任文伟,戴年华,徐晓娟,黎栩霞,计勇,吴小平,金斌松. 基于环境DNA宏条形码的青岚湖自然保护区鱼类组成及分布特征. 中国环境监测. 2024(03): 235-246 .
![]() | |
4. |
曹寿清,杨思雅,胡江春,杨慕静. 泸沽湖小口裂腹鱼人工驯养繁育试验. 水产养殖. 2024(07): 44-47 .
![]() | |
5. |
张航,梁智策,匡晨亿,周婷,廖传松,苑晶,郭传波,刘家寿. 基于水声学和渔获物调查的洱海鱼类资源时空分布特征. 水生生物学报. 2024(12): 2029-2041 .
![]() | |
6. |
贾春艳,王珂,李慧峰,高雷,杨浩,刘绍平,陈大庆,段辛斌. 禁渔初期东洞庭湖鱼类资源的空间分布与密度变化. 南方水产科学. 2022(03): 48-56 .
![]() | |
7. |
王书献,张胜茂,戴阳,王永进,隋江华,朱文斌. 利用声呐数据提取磷虾捕捞深度方法研究. 南方水产科学. 2021(04): 91-97 .
![]() | |
8. |
梁祥,薛绍伟,武智,王静,张建斌,赖宝衡,胡智光. 云龙水库鱼类资源声学评估. 西南农业学报. 2021(09): 2057-2062 .
![]() | |
9. |
徐川,胡正春. 核电厂冷源安全渔业资源声学调查. 电力安全技术. 2020(10): 55-59 .
![]() |