GUO Quan-you, YANG Xian-shi. Comparison of different bacteria growth models on chilled Pseudosciaena crocea[J]. South China Fisheries Science, 2005, 1(5): 44-49.
Citation: GUO Quan-you, YANG Xian-shi. Comparison of different bacteria growth models on chilled Pseudosciaena crocea[J]. South China Fisheries Science, 2005, 1(5): 44-49.

Comparison of different bacteria growth models on chilled Pseudosciaena crocea

More Information
  • Received Date: July 25, 2005
  • Revised Date: August 14, 2005
  • Bacterial changes of fish flesh in cultured Pseudosciaena crocea stored aerobically at 0, 5℃ were mainly analyzed, bacteria growth curves of chilled cultured P.crocea was fitted using modified Logistic and Gompertz equations.Kinetic parameters of bacterial growth and predictive model were developed with nonlinear estimation equations. The results showed that the correlation coefficient of developed models was over 0.99, indicating predictive models make it possible to describe the dynamic changes and predict the bacterial number stored at different time. Difference between predicted values and observed values were compared with root mean squares (RMS) for validating the goodness of predictive models of the bacterial growth. RMS of the Gompertz model were 0.077 and 0.100, and RMS of the Logistic model were 0.114 and 0.138 at 0, 5℃, respectively. Predicted values of the Gompertz were significant compared with the Logistic model.

  • [1]
    EL Marrakchi A, Bouchriti N, Hamama A, et al. Sensory, chemical and microbiological assessment of Moroccan sardin (Sardina pilchadus) stored in ice[J]. J Food Prot, 1990, 53(7): 600-605. doi: 10.4315/0362-028X-53.7.600
    [2]
    Surette M E, Gill T A, Leblanc P J. Biochemical basis of post-mortern nucleotide catabolism in cod (Gadus morhua) and its relationship to spoilage[J]. J Agric Food Chem, 1988, 36(1): 19-22. doi: 10.1021/jf00079a005
    [3]
    Koutsoumanis K, Giannakourou M C, Taoukis P S, et al. Application of shelf life decision system (SLDS) to marine cultured fish quality[J]. Int J Food Microbiol, 2002, 73(2-3): 375-382. doi: 10.1016/S0168-1605(01)00659-6
    [4]
    Baranyi J, Roberts T A. A dynamic approach to predicting bacterial growth in food. [J]. Int J Food Microbiol, 1994, 23(3-4): 277-294. doi: 10.1016/0168-1605(94)90157-0
    [5]
    Taoukis P S, Koutsoumanis K, Nychas G J E. Use of time temperature integrators and predictive modeling for shelf life control of chilled fish under dynamic storage conditions[J]. Int J Food Microbiol, 1999, 53(1): 21-31. doi: 10.1016/S0168-1605(99)00142-7
    [6]
    Zwietering M H, Jongenburger I, Rombouts F M, et al. Modeling of the bacterial growth curve[J]. Appl Environ Microbiol, 1990, 56(6): 1875-1881. doi: 10.1128/aem.56.6.1875-1881.1990
    [7]
    Whitng R C, Buchanan R L. Microbial modeling[J]. Food Tech, 1994, 48(6): 113-120.
    [8]
    Gibson A M, Bratchell N, Robertrs T A. Predicting microbial growth: growth responses of Salmonella in a laboratory medium as affected by pH, sodium chloride and storage temperature[J]. Int J Food Microbiol, 1988, 6(2): 155-178. doi: 10.1016/0168-1605(88)90051-7
    [9]
    Buchanan R C, Whiting R C, Damert C D. When is simple good enough: a comparison of Gompertz, Baranyi, and three-phase linear models for fitting bacterial growth curves[J]. Food Microbiol, 1997, 14(4): 313-326. doi: 10.1006/fmic.1997.0125
    [10]
    Fujikawa Hiroshi, Kai A, Morozumi Satoshi. A new Logistic model for bacterial growth[J]. J Food Hyg Soc Japan, 2003, 44(3): 155-160. doi: 10.3358/shokueishi.44.155
    [11]
    Dalgaard P. Modeling of microbial activity and prediction of shelf life of packed fresh fish[J]. Int J Food Microbiol, 1995, 26(4): 305-317. doi: 10.1016/0168-1605(94)00136-T
    [12]
    Koutsoumanis K, Nychas G J E. Application of a systematic experimental procedure to develop a microbial model for rapid fish shelf life prediction[J]. Int J Food Microbiol, 2000, 60(2-3): 171-184. doi: 10.1016/S0168-1605(00)00309-3
    [13]
    Fu B, Labuza T P. Predictive microbiology for monitoring spoilage of dairy products with time temperature integrators[J]. J Food Sci, 1991, 56(5): 1209-1215.
  • Related Articles

    [1]WEI Cun, YU Peng, YU Mingchao, SHAN Hongwei. Preliminary study of screening and characteristics of strains with Quorum sensing inhibition activity in shrimp culture environment[J]. South China Fisheries Science, 2018, 14(1): 27-34. DOI: 10.3969/j.issn.2095-0780.2018.01.004
    [2]LI Junwei, ZHU Changbo, XIE Xiaoyong, GUO Yongjian, CHEN Suwen. Research progress on breeding, aquaculture and development of Sipunculus nudus[J]. South China Fisheries Science, 2014, 10(5): 94-98. DOI: 10.3969/j.issn.2095-0780.2014.05.014
    [3]LI Haipeng, LUO Peng, YU Zonghe, HU Chaoqun, ZHANG Lüping, XIA Jianjun, REN Chunhua. Preliminary feasibility study of cage culture of tropical sea cucumber (Stichopus horrens) in the wide[J]. South China Fisheries Science, 2013, 9(6): 1-7. DOI: 10.3969/j.issn.2095-0780.2013.06.001
    [4]BAO Xuteng, XU Hao, ZHANG Jianhua, DING Jianle. Best management practices for controlling aquaculture non-point pollution[J]. South China Fisheries Science, 2012, 8(3): 79-86. DOI: 10.3969/j.issn.2095-0780.2012.03.012
    [5]WEI Bojuan, WU Chengye, QIAN Zhuozhen. Evaluation of uncertainty for detection of Quinolones residues in aquatic products by HPLC-MS/MS[J]. South China Fisheries Science, 2012, 8(3): 59-64. DOI: 10.3969/j.issn.2095-0780.2012.03.009
    [6]LIU Huang, CHE Xuan. Elementary study on evaluation of CO2 emissions from aquaculture in China[J]. South China Fisheries Science, 2010, 6(4): 77-80. DOI: 10.3969/j.issn.1673-2227.2010.04.013
    [7]MA Zhiming, XU Shihuai, JIA Xiaoping. Research status and exploitation prospect in production, basic biology and aquaculture of octopus[J]. South China Fisheries Science, 2008, 4(5): 69-73.
    [8]CAI Wenchao, OU Youjun, LI Jiaer. Present research status and aquaculture foreground of southern flounder Paralichthys lethostigma in China[J]. South China Fisheries Science, 2007, 3(6): 75-80.
    [9]LU Zhenbin, CAI Qinghai, ZHANG Xuemin. Estimation of the aquaculture pollution to water body in Tongan Bay[J]. South China Fisheries Science, 2007, 3(1): 54-61.
    [10]LIU Hong-bo, LI Ming-shuang, YANG Jian. Environment impacts of aquaculture in foreign developing countries[J]. South China Fisheries Science, 2006, 2(2): 43-50.
  • Cited by

    Periodical cited type(17)

    1. 汪洋,袁跃峰,苗晓君,范庆仁. 工厂化水产养殖自动投饲机下料仿真. 农村经济与科技. 2024(04): 68-72 .
    2. 高炜鹏,谢永和,李德堂,王君. 基于CFD-DEM耦合的养殖工船自动投饲机的研制与实验. 饲料工业. 2024(10): 10-18 .
    3. 王龙宝,杨翰瑜,王庆杰,卢彩云,王超,何进. 小麦气流辅助直线投种装置设计与试验. 农业机械学报. 2024(06): 111-120 .
    4. 董建涛,陈传峰,杨蕾. 基于EDEM-Fluent耦合仿真的湿性混凝土颗粒气力清扫起动特性研究. 大众科技. 2023(04): 32-36 .
    5. 高炜鹏,谢永和,李德堂,王君,陈卿,洪永强,张佳奇. 养殖工船自动投饲机设计和螺旋下料器的仿真分析. 渔业现代化. 2023(04): 59-67 .
    6. 骆意,张方华,朱端祥,魏树辉,黄建伟,程晓夏. 深远海养殖设备投料选择器结构设计探讨. 机械工程师. 2023(12): 85-88 .
    7. 欧阳联格,汪仑,王会,王冠,黄飞,龙天明. 抽吸式地震救援机特大颗粒负压输送数值模拟. 震灾防御技术. 2023(04): 864-872 .
    8. 俞国燕,陈振雄,刘皞春,姬文超,张宏亮. 船载式投饲机饲料输送关键参数仿真分析. 渔业现代化. 2022(02): 10-17 .
    9. 丁乐声,陈潇,谢庆墨,严俊,曹南. 基于CFD-DEM的气力投饵分配器参数影响分析. 饲料研究. 2022(08): 118-122 .
    10. 张三丰,熊威,柯林,黄静林,沈学锋. 针对饲料气力输送系统设备选型参数的理论及仿真计算. 中国水运(下半月). 2022(08): 72-74 .
    11. 黄建伟,骆意,魏树辉,陈铭治,朱端祥,刘亮清. 深远海养殖自动投饲系统仿真分析与试验验证. 渔业现代化. 2022(05): 68-75 .
    12. 买买提明·艾尼,加合甫·阿汗,吾尔科木·冉合木,古丽巴哈尔·托乎提,金阿芳. 籽棉团悬浮速度的理论算法与试验验证. 农业工程学报. 2022(24): 52-62 .
    13. 张三丰,熊威,柯林,黄静林,沈学锋. 针对饲料气力输送系统设备选型参数的理论及仿真计算. 中国水运. 2022(16): 72-74 .
    14. 王晓晨,高自成,李立君,廖凯,庞国友,赵凯杰. 基于CFD-DEM油茶果负压吸附系统数值模拟及试验研究. 农机化研究. 2021(08): 192-197 .
    15. 侯娟,周为峰,王鲁民,樊伟,原作辉. 中国深远海养殖潜力的空间分析. 资源科学. 2020(07): 1325-1337 .
    16. 仝玉超. 锂离子电池正负极材料气力输送系统研究. 决策探索(中). 2020(08): 94 .
    17. 林礼群,王志勇. 工船养殖颗粒饲料气力输送系统参数优化. 船舶工程. 2020(S2): 51-55 .

    Other cited types(11)

Catalog

    Article views (5411) PDF downloads (3388) Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return